27 resultados para spatial and temporal variability
em Cochin University of Science
Resumo:
The objective of the present study is to understand the spatial and temporal variability of sea surface temperature(SST), precipitable water, zonal and meridional components of wind stress over the tropical Indian Ocean to understand the different scales of variability of these features of Indian Ocean. Empirical Orthogonal Function (EOF) and wavelet analysis techniques are utilized to understand the standing oscillations and multi scale oscillations respectively. The study has been carried out over Indian Ocean and South Indian Ocean. For the present study, NCEP/NCAR(National Center for Environmental Prediction National Center for Atmospheric Research) reanalyzed daily fields of sea surface temperature, zonal and meridional surface wind components and precipitable water amount during 1960-1998 are used. The principle of EOF analysis and the methodology used for the analysis of spatial and temporal variance modes.
Resumo:
In the present study an attempt has been made to understand the microzooplankton community along the easr coast of India. Most of the earlier studies projected Bay of Bengal as an oligotrophic system where phytoplankton growth is limited by a number of factors among which nutrients are the foremost. Hence it is logical to consider that the most of the primary production in the Bay of Bengal could be contributed by small sized phytoplankton harnessing the available resources, which in turn can be utilized effiency by the microzooplankton only. Hence microzooplankton could play in transferring primary organic carbon to higher tropic levels in this region.
Resumo:
Spatial and temporal analyses of the spectra of the laser induced plasma from a polytetrafluroethylene (PTFE) target obtained with the 1.06 mu m radiation from a Q-switched Nd:YAG laser have been carried out. The spatially resolved spectra of the plasma emission show that molecular bands of C2 (Swan bands) and CN are very intense in the outer regions of the plasma, whereas higher ionized states of carbon are predominant in the core region of the plasma emission. The vibrational temperature and population distribution in the different vibrational levels have been studied as a function of laser energy. From the time resolved studies, it has been observed that there exist fairly large time delays for the onset of emission from all the species in the outer region of the plasma. The molecular bands in each region exhibit much larger time delays in comparison to the ionic lines in the plasma.
Resumo:
Department of Physics, Cochin University of Science and Technology
Resumo:
This thesis entitled spatial and temporal variarion of microbial community structure in surficial sediments of cochin estuary.In the estuarine and coastal systems, organic matter (OM) is derived not only from autochthonous primary production, but also from allochthonous (terrestrial) organic matter (OM) delivered by river discharge and runoff. A significant portion of the OM sinks through the water column and is ultimately stored in carbon pool in the sediments.Analysis of spatial and temporal variation in benthic microbial community of a tropical estuary was conducted for the first time using non selective measures that affirms that PLFA approach is a sensitive and reliable method in determining microbial community structures of surficial sediments of estuary.The close relationship between the concentrations of the microbial fatty acids and total biomass indicates that bacteria could account for the largest proportion of the biomass in the sediments.This is first study that has documented the changes in microbial community composition linkage to biotic and abiotic variables in benthic estuarine ecosystem. This contemporaneous community will be the backdrop for understanding the response of autochthonous community to increasing anthropogenic stress.
Resumo:
The influence of salinity on phytoplankton varies widely, because different species have different salinity preferences. Like marine and aquatic species, many phytoplankton species exhibit tolerance to certain salinity, beyond which, it can inhibit their growth. Light is the most important factor that influences phytoplankton growth. In aquatic environments (lakes, sea or estuary) the light incident on the surface is rapidly reduced exponentially with depth (Krik, 1994). In estuaries, the major factor influencing the light availability is the suspended particulate matter, which attenuates and scatters the light. The light changes with time of the day and the season, affecting the amount of light penetrating the water column. Similarly, biological factor like copepod grazing is a major factor influencing the standing crop of phytoplankton. The copepod can actively graze up to 75% of the phytoplankton biomass in a tropical estuary (Tan et. al., 2004). It is in the context that the present study investigates the salinity, light (physical factors) and copepod grazing (biological factor) phytoplankton as the factors controlling phytoplankton growth and distribution
Resumo:
The present study is focused on the intensity distribution of rainfall in different classes and their contribution to the total seasonal rainfall. In addition, we studied the spatial and diurnal variation of the rainfall in the study areas. For the present study, we retrieved data from TRMM (Tropical Rain Measuring Mission) rain rate available in every 3 h temporal and 25 km spatial resolutions. Moreover, station rainfall data is used to validate the TRMM rain rate and found significant correlation between them (linear correlation coefficients are 0.96, 0.85, 0.75 and 0.63 for the stations Kota Bharu, Senai, Cameron highlands and KLIA, respectively). We selected four areas in the Peninsular Malaysia and they are south coastal, east coastal, west coastal and highland regions. Diurnal variation of frequency of rain occurrence is different for different locations. We noticed bimodal variation in the coastal areas in most of the seasons and unimodal variation in the highland/inland area. During the southwest monsoon period in the west coastal stations, there is no distinct diurnal variation. The distribution of different intensity classes during different seasons are explained in detail in the results
Resumo:
Present study is focused on the spatiotemporal variation of the microbial population (bacteria, fungus and actinomycetes) in the grassland soils of tropical montane forest and its relation with important soil physico-chemical characteristics and nutrients. Different physico-chemical properties of the soil such as temperature, moisture content, organic carbon, available nitrogen, available phosphorous and available potassium have been studied. Results of the present study revealed that both microbial load and soil characteristics showed spatiotemporal variation. Microbial population of the grassland soils were characterized by high load of bacteria followed by fungus and actinomycetes. Microbial load was high during pre monsoon season, followed by post monsoon and monsoon. The microbial load varied with important soil physico-chemical properties and nutrients. Organic carbon content, available nitrogen and available phosphorous were positively correlated with bacterial load and the correlation is significant at 0.05 and 0.01 levels respectively. Available nitrogen and available phosphorous were positively correlated with fungus at 0.05 level significance. Moisture content was negatively correlated with actinomycetes at 0.01 level of significance. Organic carbon negatively correlated with actinomycetes load at 0.05 level of significance
Resumo:
This study focuses on the south –west monsoon rainfall over Kerala and its variability both on the spatial and temporal scales. The main objectives of the study are, interanual, long-term and decadal variabilities in MRF(monsoon rain fall),relationship between antecedent global circulation parameters, diurnal variability using data of a large number of stations in Kerala and the spatial distribution of rainfall under two large scale synoptic. Kerala gets nearly 190cm of rainfall during the south-west monsoon season 1st June to 30th September. This is more than twice the monsoon rainfall of India. A good part of kerala’s rainfall is caused by the orography of the Western Ghats Mountain ranges. The state receives 286cm of annual rainfall of which 68%is during the south-west monsoon season. The summer monsoon rainfall of Kerala shows a decreasing trend of 12.0%in 96 years. The study shows that the Intra Seasonal Oscillations(ISO) of the monsoon season has large interanual variability,some years having long period and other years having short period ISO. It is seen that Western Ghats has a strong control on the east west profile on the monsoon rainfall.
Resumo:
A better understanding of the rainfall climatology of the Middle East region identifying the mechanisms responsible for the rain producing systems is essential for effective utilization of the water resources over the arid region. A comprehensive analysis on the rainfall climatology of the Middle East region is carried out to bring out the spatial and temporal variation of rainfall and mechanisms responsible for the rain events. The study was carried out utilizing rainfall, OLR, wind and humidity data sets procured from TRMM, NOAA and NCEP-NCAR. Climatology of annual rainfall brings out two areas of alarmingly low rainfall in the Middle East region: one in Egypt, Jordan and adjoining areas and the other in the southern part of Saudi Arabia. Daily rainfall analysis indicates that northern region gets rainfall mainly during winter and spring associated with the passage of Mediterranean low pressure systems whereas rain over the southern region is caused mainly by the monsoon organized convection, cross equatorial flow and remnants of low pressure systems associated with the monsoon during the summer season. Thermodynamic structure of the atmosphere reveals that the region does not have frequent local convection due to insufficient moisture content. The sinking motion associated with the sub tropic high pressure system and subsidence associated with the Walker circulation are responsible for maintaining warm and dry air over the region.
Resumo:
The aerosols in the atmosphere play major role in the radiation balance of the Earthatmosphere system. Direct and indirect impact of aerosols on the weather and climate still remains as a topic to be investigated in detail. The effect of aerosols on the radiation budget and thereby circulation pattern is important and requires further study. A detailed analysis of the aerosol properties, their variability and meteorological processes that affect the aerosol properties and distribution over the Indian region is performed in the thesis. The doctoral thesis entitled “Characteristics of aerosols over the Indian region and their variability associated with atmospheric conditions” contains 7 chapters. This thesis presents results on the analysis on the distribution (spatial and temporal) and characteristics of the aerosols over the Indian region and adjoining seas. Regional and stationwise data were analysed and methods such as modeling and statistical analysis are implemented to understand the aerosol properties, classification and transportation. Chapter-1 presents a brief introduction on the aerosols, their measurement techniques, impact of aerosols on the atmospheric radiation budget, climatic and geographic features of the study area and the literature review on the previous studies. It provides a basic understanding in the field of study and objective of the thesis. Definition of the aerosols, their sources/sinks and classification of the particles according to optical and microphysical properties are described. Different measurement techniques such as sampling and remote sensing methods are explained in detail. Physical parameters used to describe aerosol properties and effect of aerosols on the radiation distribution are also discussed. The chapter also explains the objectives of the thesis and description of climatic features of the study area.
Resumo:
In situ methods used for water quality assessment have both physical and time constraints. Just a limited number of sampling points can be performed due to this, making it difficult to capture the range and variability of coastal processes and constituents. In addition, the mixing between fresh and oceanic water creates complex physical, chemical and biological environment that are difficult to understand, causing the existing measurement methodologies to have significant logistical, technical, and economic challenges and constraints. Remote sensing of ocean colour makes it possible to acquire information on the distribution of chlorophyll and other constituents over large areas of the oceans in short periods. There are many potential applications of ocean colour data. Satellite-derived products are a key data source to study the distribution pattern of organisms and nutrients (Guillaud et al. 2008) and fishery research (Pillai and Nair 2010; Solanki et al. 2001. Also, the study of spatial and temporal variability of phytoplankton blooms, red tide identification or harmful algal blooms monitoring (Sarangi et al. 2001; Sarangi et al. 2004; Sarangi et al. 2005; Bhagirathan et al., 2014), river plume or upwelling assessments (Doxaran et al. 2002; Sravanthi et al. 2013), global productivity analyses (Platt et al. 1988; Sathyendranath et al. 1995; IOCCG2006) and oil spill detection (Maianti et al. 2014). For remote sensing to be accurate in the complex coastal waters, it has to be validated with the in situ measured values. In this thesis an attempt to study, measure and validate the complex waters with the help of satellite data has been done. Monitoring of coastal ecosystem health of Arabian Sea in a synoptic way requires an intense, extensive and continuous monitoring of the water quality indicators. Phytoplankton determined from chl-a concentration, is considered as an indicator of the state of the coastal ecosystems. Currently, satellite sensors provide the most effective means for frequent, synoptic, water-quality observations over large areas and represent a potential tool to effectively assess chl-a concentration over coastal and oceanic waters; however, algorithms designed to estimate chl-a at global scales have been shown to be less accurate in Case 2 waters, due to the presence of water constituents other than phytoplankton which do not co-vary with the phytoplankton. The constituents of Arabian Sea coastal waters are region-specific because of the inherent variability of these optically-active substances affected by factors such as riverine input (e.g. suspended matter type and grain size, CDOM) and phytoplankton composition associated with seasonal changes.
Resumo:
Upwelling regions occupies only a small portion of the global ocean surface. However it accounts for a large fraction of the oceanic primary production as well as fishery. Therefore understanding and quantifying the upwelling is of great importance for the marine resources management. Most of the coastal upwelling zones in the Arabian Sea are wind driven uniform systems. Mesoscale studies along the southwest coast of India have shown high spatial and temporal variability in the forcing mechanism and intensity of upwelling. There exists an equatorward component of wind stress as similar to the most upwelling zones along the eastern oceanic boundaries. Therefore an offshore component of surface Ekman transport is expected throughout the year. But several studies supported with in situ evidences have revealed that the process is purely recurring on seasonal basis. The explanation merely based on local wind forcing alone is not sufficient to support the observations. So, it is assumed that upwelling along the South Eastern Arabian Sea is an effect of basin wide wind forcing rather than local wind forcing. In the present study an integrated approach has been made to understand the process of upwelling of the South Eastern Arabian Sea. The latitudinal and seasonal variations (based on Sea Surface Temperature, wind forcing, Chlorophyll a and primary production), forcing mechanisms (local wind and remote forcing) and the factors influencing the system (Arabian Sea High Saline Water, Bay of Bengal water, runoff, coastal geomorphology) are addressed herewith.
Resumo:
Ozone present in the atmosphere not only absorbs the biologically harmful ultraviolet radiation but also is an important ingredient of the climate system. The radiative absorption properties of ozone make it a determining factor in the structure of the atmosphere. Ozone in the troposphere has many negative impacts on humans and other living beings. Another significant aspect is the absorption of outgoing infrared radiation by ozone thus acting as a greenhouse gas. The variability of ozone in the atmosphere involves many interconnections with the incoming and outgoing radiation, temperature circulation etc. Hence ozone forms an important part of chemistry-climate as well as radiative transfer models. This aspect also makes the quantification of ozone more important. The discovery of Antarctic ozone hole and the role of anthropogenic activities in causing it made it possible to plan and implement necessary preventive measures. Continuous monitoring of ozone is also necessary to identify the effect of these preventive steps. The reactions involving the formation and destruction of ozone are influenced significantly by the temperature fluctuations of the atmosphere. On the other hand the variations in ozone can change the temperature structure of the atmosphere. Indian subcontinent is a region having large weather and climate variability which is evident from the large interannual variability of monsoon system over the region. Nearly half of Indian region comprises the tropical region. Most of ozone is formed in the tropical region and transported to higher latitudes. The formation and transport of ozone can be influenced by changes in solar radiation and various atmospheric circulation features. Besides industrial activities and vehicular traffic is more due to its large population. This may give rise to an increase in the production of tropospheric ozone which is greenhouse gas. Hence it becomes necessary to monitor the atmospheric ozone over this region. This study probes into the spatial distribution and temporal evolution of ozone over Indian subcontinent and discusses the contributing atmospheric parameters.
Resumo:
Ozone present in the atmosphere not only absorbs the biologically harmful ultraviolet radiation but also is an important ingredient of the climate system. The radiative absorption properties of ozone make it a determining factor in the structure of the atmosphere. Ozone in the troposphere has many negative impacts on humans and other living beings. Another significant aspect is the absorption of outgoing infrared radiation by ozone thus acting as a greenhouse gas. The variability of ozone in the atmosphere involves many interconnections with the incoming and outgoing radiation, temperature circulation etc. Hence ozone forms an important part of chemistry-climate as well as radiative transfer models. This aspect also makes the quantification of ozone more important. The discovery of Antarctic ozone hole and the role of anthropogenic activities in causing it made it possible to plan and implement necessary preventive measures. Continuous monitoring of ozone is also necessary to identify the effect of these preventive steps. The reactions involving the formation and destruction of ozone are influenced significantly by the temperature fluctuations of the atmosphere. On the other hand the variations in ozone can change the temperature structure of the atmosphere. Indian subcontinent is a region having large weather and climate variability which is evident from the large interannual variability of monsoon system over the region. Nearly half of Indian region comprises the tropical region. Most of ozone is formed in the tropical region and transported to higher latitudes. The formation and transport of ozone can be influenced by changes in solar radiation and various atmospheric circulation features. Besides industrial activities and vehicular traffic is more due to its large population. This may give rise to an increase in the production of tropospheric ozone which is greenhouse gas. Hence it becomes necessary to monitor the atmospheric ozone over this region. This study probes into the spatial distribution and temporal evolution of ozone over Indian subcontinent and discusses the contributing atmospheric parameters.