5 resultados para spacing

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of carrying out this investigation is to develop suitable transducer array systems so that underwater pipeline inspection could be carried out in a much better way, a focused beam and electronic steering can reduce inspection time as well. Better results are obtained by optimizing the array parameters. The spacing between the elements is assumed to be half the wavelength so that the interelement interaction is minimum. For NDT applications these arrays are operated at MHz range. The wavelengths become very small in these frequency ranges. Then the size of the array elements becomes very small, requiring hybrid construction techniques for their fabrication. Transducer elements have been fabricated using PVDF as the active, mild steel as the backing and conducting silver preparation as the bonding materials. The transducer is operated in the (3,3) mode. The construction of a high frequency array is comparatively complicated. The interelement spacing between the transducer elements becomes considerably small when high frequencies are considered. It becomes very difficult to construct the transducer manually. The electrode connections to the elements can produce significant loading effect. The array has to be fabricated using hybrid construction techniques. The active materials has to be deposited on a proper substrate and etching techniques are required to fabricate the array. The annular ring, annular cylindrical or other similar structural forms of arrays may also find applications in the near future in treatments were curved contours of the human body are affected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Systems which employ underwater acoustic energy for observation or communication are called sonar systems. The active and passive sonars are the two types of systems used for the detection and localisation of targets in underwater. Active sonar involves the transmission of an acoustic signal which, when reflected from a target, provides the sonar receiver with a basis for the detection and estimation. Passive sonar bases its detection and estimation on sounds which emanate from the target itself--Machinery noise, flow noise, transmission from its own active sonar etc.Electroacoustic transducers are used in sonar systems for the transmission and detection of acoustic energy. The transducer which is used for the transmission of acoustic energy is called projector and the one used for reception is called hydrophone. Since a single transducer is not sufficient enough for long range and directional transmission, a properly distributed array of transducers are to be used [9-11].The need and requirement for spatial processing to generate the most favourable directivity patterns for transducer systems used in underwater applications have already been analysed by several investigators [12-21].The desired directivity pattern can be either generated by the use of suitable focussing techniques or by an array of non-directional sensor elements, whose arrangements, spacing and the mode of excitation provide the required radiation pattern or by the combination of these.While computing that the directivity pattern, it is assumed strength of the elements are unaffected by the the source acoustic pressure at each source. However, in closely packed a r r a y s , the acoustic interaction effects experienced among the elements will modify the behaviour of individual elements and in turn will reduce the acoust ic source leve 1 wi t h respect to the maximum t heoret i cal va 1ue a s well as degrade the beam pa t tern. Th i s ef fect shou 1d be reduced in systems that are intended to generate high acoustic power output and unperturbed beam patterns [2,22-31].The work herein presented includes an approach for designing efficient and well behaved underwater transd~cer arrays, taking into account the acoustic interaction effect experienced among the closely packed multielement arrays.Architectural modifications reducing the interaction effect different radiating apertures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multimode laser emission is observed in a polymer optical fiber doped with a mixture of Rhodamine 6G (Rh 6G) and Rhodamine B (Rh B) dyes. Tuning of laser emission is achieved by using the mixture of dyes due to the energy transfer occurring from donor molecule (Rh 6G) to acceptor molecule (Rh B). The dye doped poly(methyl methacrylate)-based polymer optical fiber is pumped axially at one end of the fiber using a 532 nm pulsed laser beam from a Nd:YAG laser and the fluorescence emission is collected from the other end. At low pump energy levels, fluorescence emission is observed. When the energy is increased beyond a threshold value, laser emission occurs with a multimode structure. The optical feedback for the gain medium is provided by the cylindrical surface of the optical fiber, which acts as a cavity. This fact is confirmed by the mode spacing dependence on the diameter of the fiber.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biotechnology is currently considered as a useful altemative to conventional process technology in industrial and catalytic fields. The increasing awareness of the need to create green and sustainable production processes in all fields of chemistry has stimulated materials scientists to search for innovative catalysts supports. lmmobilization of enzymes in inorganic matrices is very useful in practical applications due to the preserved stability and catalytic activity of the immobilized enzymes under extreme conditions. Nanostructured inorganic, organic or hybrid organic-inorganic nanocomposites present paramount advantages to facilitate integration and miniaturization of the devices (nanotechnologies), thus affording a direct connection between the inorganic, organic and biological worlds. These properties, combined with good chemical stability, make them competent candidates for designed biocatalysts, protein-separation devices, drug delivery systems, and biosensors Aluininosilicate clays and layered double hydroxides, displaying, respectively, cation and anion exchange properties, were found to be attractive materials for immobilization because of their hydrophilic, swelling and porosity properties, as well as their mechanical and thermal stability.The aim of this study is the replacement of inorganic catalysts by immobilized lipases to obtain purer and healthier products.Mesocellular silica foams were synthesized by oil-in-water microemulsion templating route and were functionalized with silane and glutaraldehyde. " The experimental results from IR spectroscopy and elemental analysis demonstrated the presence of immobilized lipase and also functionalisation with silane and glutaraldehyde on the supports.The present work is a comprehensive study on enzymatic synthesis of butyl isobutyrate through esterification reaction using lipase immobilized onto mesocellular siliceous foams and montmorillonite K-10 via adsorption and covalent binding. Moreover, the irnrnobil-ization does not modify the nature of the kinetic mechanism proposed which is of the Bi-Bi Ping—Pong type with inhibition by n-butanol. The immobilized biocatalyst can be commercially exploited for the synthesis of other short chain flavor esters. Mesocellular silica foams (MCF) were synthesized by microemusion templating method via two different routes (hydrothermal and room temperature). and were functionalized with silane and glutaraldehyde. Candida rugosa lipase was adsorbed onto MCF silica and clay using heptane as the coupling medium for reactions in non-aqueous media. I From XRD results, a slight broadening and lowering of d spacing values after immobilization and modification was observed in the case of MCF 160 and MCF35 but there was no change in the d-spacing in the case of K-10 which showed that the enzymes are adsorbed only on the external surface. This was further confirmed from the nitrogen adsorption measurements

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this venture three distinct class of catalysts such as, pillared clays and transition metal loaded pillared clays , porous clay heterostructures and their transition metal loaded analogues and DTP supported on porous clay heterostructures etc. were prepared and characterized by various physico chemical methods. The catalytic activities of prepared catalysts were comparatively evaluated for the industrially important alkylation, acetalization and oxidation reactions.The general conclusions drawn from the present investigation are  Zirconium, iron - aluminium pillared clays were synthesized by ion exchange method and zirconium-silicon porous heterostructures were Summary and conclusions 259 prepared by intergallery template method. Transition metals were loaded in PILCs and PCHs by wet impregnation method.  Textural and acidic properties of the clays were modified by pillaring and post pillaring modifications.  The shift in 2θ value to lower range and increase in d (001) spacing indicate the success of pillaring process.  Surface area, pore volume, average pore size etc. increased dramatically as a result of pillaring process.  Porous clay heterostructures have higher surface area, pore volume, average pore diameter and narrow pore size distribution than that of pillared clays.  The IR spectrum of PILCs and PCHs are in accordance with literature without much variation compared to parent montmorillonite which indicate that basic clay structure is retained even after modification.  The silicon NMR of PCHs materials have intense peaks corresponding to Q4 environment which indicate that mesoporous silica is incorporated between clay layers.  Thermo gravimetric analysis showed that thermal stability is improved after the pillaring process. PCH materials have higher thermal stability than PILCs.  In metal loaded pillared clays, up to 5% metal species were uniformly dispersed (with the exception of Ni) as evident from XRD and TPR analysis. Chapter 9 260  Impregnation of transition metals in PILCs and PCHs enhanced acidity of catalysts as evident from TPD of ammonia and cumene cracking reactions.  For porous clay heterostructures the acidic sites have major contribution from weak and medium acid sites which can be related to the Bronsted sites as evident from TPD of ammonia.  Pillared clays got more Lewis acidity than PCHs as inferred from α- methyl styrene selectivity in cumene cracking reaction.  SEM images show that layer structure is preserved even after modification. Worm hole like morphology is observed in TEM image of PCHs materials  In ZrSiPCHS, Zr exists as Zr 4+ and is incorporated to silica pillars in the intergallary of clay layers as evident from XPS analysis.  In copper loaded zirconium pillared clays, copper exists as isolated species with +2 oxidation state at lower loading. At higher loading, Cu exists as clusters as evident from reduction peak at higher temperatures in TPR.  In vanadium incorporated PILCs and PCHs, vanadium exist as isolated V5+ in tetrahedral coordination which is confirmed from TPR and UVVis DRS analysis.  In cobalt loaded PCHs, cobalt exists as CoO with 2+ oxidation state as confirmed from XPS.  Cerium incorporated iron aluminium pillared clay was found to be the best catalyst for the hydroxylation of phenol in aqueous media due to the additional surface area provided by ceria mesopores and its redox properties. Summary and conclusions 261  Cobalt loaded zirconium porous clay heterostructures were found to be promising catalyst for the tertiary butylation of phenol due to higher surface area and acidic properties.  Copper loaded pillared clays were found to be good catalyst for the direct hydroxylation of benzene to phenol.  Vanadium loaded PCHs catalysts were found to be efficient catalysts for oxidation of benzyl alcohol.  DTP was firmly fixed on the mesoporous channels of PCHs by Direct method and functionalization method.  DTP supported PCHs catalyst were found to be good catalyst for acetalization of cyclohexanone with more than 90% conversion.