10 resultados para solution-based DNA extraction
em Cochin University of Science
Resumo:
Speech is a natural mode of communication for people and speech recognition is an intensive area of research due to its versatile applications. This paper presents a comparative study of various feature extraction methods based on wavelets for recognizing isolated spoken words. Isolated words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. This work includes two speech recognition methods. First one is a hybrid approach with Discrete Wavelet Transforms and Artificial Neural Networks and the second method uses a combination of Wavelet Packet Decomposition and Artificial Neural Networks. Features are extracted by using Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD). Training, testing and pattern recognition are performed using Artificial Neural Networks (ANN). The proposed method is implemented for 50 speakers uttering 20 isolated words each. The experimental results obtained show the efficiency of these techniques in recognizing speech
Resumo:
Pseudomonas aeruginosa MCCB 123 was grown in a synthetic medium for β-1,3 glucanase production. From the culture filtrate, β-1,3 glucanase was purified with a molecular mass of 45 kDa. The enzyme was a metallozyme as its β-1,3 glucanase activity got inhibited by the metal chelator EDTA. Optimum pH and temperature for β-1,3 glucanase activity on laminarin was found to be 7 and 50 °C respectively. The MCCB 123 β-1,3 glucanase was found to have good lytic action on a wide range of fungal isolates, and hence its application in fungal DNA extraction was evaluated. β-1,3 glucanase purified from the culture supernatant of P. aeruginosa MCCB 123 could be used for the extraction of fungal DNA without the addition of any other reagents generally used. Optimum pH and temperature of enzyme for fungal DNA extraction was found to be 7 and 65 °C respectively. This is the first report on β-1,3 glucanase employed in fungal DNA extraction
Resumo:
Novel latex based and solution based adhesives were prepared and evaluated for wood to wood bonding.These adhesive were found to be superior to commercical adhesives like fevicol and dentrite.Novel adhesives were prepared for leather to leather bonding and these were also found to be more efficientt than the polyurethane type and dentrite adhesives used commercially.A novel strip adhesive system employing very low amount of solvents was tried successfully for rubber-to-metal bonding.Further ,a novel adhesive system was investigated successfully for bonding copper coated bead wire and steel cord to rubber by modifying it with chloroprene rubber.
Resumo:
Magnetic Resonance Imaging (MRI) is a multi sequence medical imaging technique in which stacks of images are acquired with different tissue contrasts. Simultaneous observation and quantitative analysis of normal brain tissues and small abnormalities from these large numbers of different sequences is a great challenge in clinical applications. Multispectral MRI analysis can simplify the job considerably by combining unlimited number of available co-registered sequences in a single suite. However, poor performance of the multispectral system with conventional image classification and segmentation methods makes it inappropriate for clinical analysis. Recent works in multispectral brain MRI analysis attempted to resolve this issue by improved feature extraction approaches, such as transform based methods, fuzzy approaches, algebraic techniques and so forth. Transform based feature extraction methods like Independent Component Analysis (ICA) and its extensions have been effectively used in recent studies to improve the performance of multispectral brain MRI analysis. However, these global transforms were found to be inefficient and inconsistent in identifying less frequently occurred features like small lesions, from large amount of MR data. The present thesis focuses on the improvement in ICA based feature extraction techniques to enhance the performance of multispectral brain MRI analysis. Methods using spectral clustering and wavelet transforms are proposed to resolve the inefficiency of ICA in identifying small abnormalities, and problems due to ICA over-completeness. Effectiveness of the new methods in brain tissue classification and segmentation is confirmed by a detailed quantitative and qualitative analysis with synthetic and clinical, normal and abnormal, data. In comparison to conventional classification techniques, proposed algorithms provide better performance in classification of normal brain tissues and significant small abnormalities.
Resumo:
In the present study,heterotrophic protease producing bacterial isolates were screened for protease activity and a potent protease producing bacterial isolate was selected,identified and coded as Pseudomonas aeruginosa MCCB 123.The organism was capable of producing three different types of enzymes each having potential industrial applications.The non-toxic nature of the bacterial strain and the relatively non-toxic nature of three enzymes suggested their poetential application in various industries.Application of LasA protease and beta-1,3 glucanase in DNA extraction is a promising area for commercial utilization. LasB protease can find its potential application in detergent and tanning industries.As on today Bacillus sp.has been the source of commercial proteases,and the ones produced form P.aeruginosa 123 can pave way for making the industrial and biomedical processes more cost effective and refined.
Resumo:
A spectral angle based feature extraction method, Spectral Clustering Independent Component Analysis (SC-ICA), is proposed in this work to improve the brain tissue classification from Magnetic Resonance Images (MRI). SC-ICA provides equal priority to global and local features; thereby it tries to resolve the inefficiency of conventional approaches in abnormal tissue extraction. First, input multispectral MRI is divided into different clusters by a spectral distance based clustering. Then, Independent Component Analysis (ICA) is applied on the clustered data, in conjunction with Support Vector Machines (SVM) for brain tissue analysis. Normal and abnormal datasets, consisting of real and synthetic T1-weighted, T2-weighted and proton density/fluid-attenuated inversion recovery images, were used to evaluate the performance of the new method. Comparative analysis with ICA based SVM and other conventional classifiers established the stability and efficiency of SC-ICA based classification, especially in reproduction of small abnormalities. Clinical abnormal case analysis demonstrated it through the highest Tanimoto Index/accuracy values, 0.75/98.8%, observed against ICA based SVM results, 0.17/96.1%, for reproduced lesions. Experimental results recommend the proposed method as a promising approach in clinical and pathological studies of brain diseases
Resumo:
This work is aimed at building an adaptable frame-based system for processing Dravidian languages. There are about 17 languages in this family and they are spoken by the people of South India.Karaka relations are one of the most important features of Indian languages. They are the semabtuco-syntactic relations between verbs and other related constituents in a sentence. The karaka relations and surface case endings are analyzed for meaning extraction. This approach is comparable with the borad class of case based grammars.The efficiency of this approach is put into test in two applications. One is machine translation and the other is a natural language interface (NLI) for information retrieval from databases. The system mainly consists of a morphological analyzer, local word grouper, a parser for the source language and a sentence generator for the target language. This work make contributios like, it gives an elegant account of the relation between vibhakthi and karaka roles in Dravidian languages. This mapping is elegant and compact. The same basic thing also explains simple and complex sentence in these languages. This suggests that the solution is not just ad hoc but has a deeper underlying unity. This methodology could be extended to other free word order languages. Since the frame designed for meaning representation is general, they are adaptable to other languages coming in this group and to other applications.
Resumo:
Speech signals are one of the most important means of communication among the human beings. In this paper, a comparative study of two feature extraction techniques are carried out for recognizing speaker independent spoken isolated words. First one is a hybrid approach with Linear Predictive Coding (LPC) and Artificial Neural Networks (ANN) and the second method uses a combination of Wavelet Packet Decomposition (WPD) and Artificial Neural Networks. Voice signals are sampled directly from the microphone and then they are processed using these two techniques for extracting the features. Words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. Training, testing and pattern recognition are performed using Artificial Neural Networks. Back propagation method is used to train the ANN. The proposed method is implemented for 50 speakers uttering 20 isolated words each. Both the methods produce good recognition accuracy. But Wavelet Packet Decomposition is found to be more suitable for recognizing speech because of its multi-resolution characteristics and efficient time frequency localizations
Resumo:
On-line handwriting recognition has been a frontier area of research for the last few decades under the purview of pattern recognition. Word processing turns to be a vexing experience even if it is with the assistance of an alphanumeric keyboard in Indian languages. A natural solution for this problem is offered through online character recognition. There is abundant literature on the handwriting recognition of western, Chinese and Japanese scripts, but there are very few related to the recognition of Indic script such as Malayalam. This paper presents an efficient Online Handwritten character Recognition System for Malayalam Characters (OHR-M) using K-NN algorithm. It would help in recognizing Malayalam text entered using pen-like devices. A novel feature extraction method, a combination of time domain features and dynamic representation of writing direction along with its curvature is used for recognizing Malayalam characters. This writer independent system gives an excellent accuracy of 98.125% with recognition time of 15-30 milliseconds
Resumo:
Anticipating the increase in video information in future, archiving of news is an important activity in the visual media industry. When the volume of archives increases, it will be difficult for journalists to find the appropriate content using current search tools. This paper provides the details of the study we conducted about the news extraction systems used in different news channels in Kerala. Semantic web technologies can be used effectively since news archiving share many of the characteristics and problems of WWW. Since visual news archives of different media resources follow different metadata standards, interoperability between the resources is also an issue. World Wide Web Consortium has proposed a draft for an ontology framework for media resource which addresses the intercompatiblity issues. In this paper, the w3c proposed framework and its drawbacks is also discussed