3 resultados para soft-core potential

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work derives motivation from the so called surface/interfacial magnetism in core shell structures and commercial samples of Fe3O4 and c Fe2O3 with sizes ranging from 20 to 30 nm were coated with polyaniline using plasma polymerization and studied. The High Resolution Transmission Electron Microscopy images indicate a core shell structure after polyaniline coating and exhibited an increase in saturation magnetization by 2 emu/g. For confirmation, plasma polymerization was performed on maghemite nanoparticles which also exhibited an increase in saturation magnetization. This enhanced magnetization is rather surprising and the reason is found to be an interfacial phenomenon resulting from a contact potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm), or structures having nano-scale repeat distances between the different phases that make up the material. In the broadest sense this definition can include porous media, colloids, gels and copolymers, but is more usually taken to mean the solid combination of a bulk matrix and nano-dimensional phase(s) differing in properties due to dissimilarities in structure and chemistry. The mechanical, electrical, thermal, optical, electrochemical, catalytic properties of the nanocomposite will differ markedly from that of the component materials. Size limits for these effects have been proposed, <5 nm for catalytic activity, <20 nm for making a hard magnetic material soft, <50 nm for refractive index changes, and <100 nm for achieving superparamagnetism, mechanical strengthening or restricting matrix dislocation movement. Conducting polymers have attracted much attention due to high electrical conductivity, ease of preparation, good environmental stability and wide variety of applications in light-emitting, biosensor chemical sensor, separation membrane and electronic devices. The most widely studied conducting polymers are polypyrrole, polyaniline, polythiophene etc. Conducting polymers provide tremendous scope for tuning of their electrical conductivity from semiconducting to metallic region by way of doping and are organic electro chromic materials with chemically active surface. But they are chemically very sensitive and have poor mechanical properties and thus possessing a processibility problem. Nanomaterial shows the presence of more sites for surface reactivity, they possess good mechanical properties and good dispersant too. Thus nanocomposites formed by combining conducting polymers and inorganic oxide nanoparticles possess the good properties of both the constituents and thus enhanced their utility. The properties of such type of nanocomposite are strongly depending on concentration of nanomaterials to be added. Conducting polymer composites is some suitable composition of a conducting polymer with one or more inorganic nanoparticles so that their desirable properties are combined successfully. The composites of core shell metal oxide particles-conducting polymer combine the electrical properties of the polymer shell and the magnetic, optical, electrical or catalytic characteristics of the metal oxide core, which could greatly widen their applicability in the fields of catalysis, electronics and optics. Moreover nanocomposite material composed of conducting polymers & oxides have open more field of application such as drug delivery, conductive paints, rechargeable batteries, toners in photocopying, smart windows, etc.The present work is mainly focussed on the synthesis, characterization and various application studies of conducting polymer modified TiO2 nanocomposites. The conclusions of the present work are outlined below, Mesoporous TiO2 was prepared by the cationic surfactant P123 assisted hydrothermal synthesis route and conducting polymer modified TiO2 nanocomposites were also prepared via the same technique. All the prepared systems show XRD pattern corresponding to anatase phase of TiO2, which means that there is no phase change occurring even after conducting polymer modification. Raman spectroscopy gives supporting evidence for the XRD results. It also confirms the incorporation of the polymer. The mesoporous nature and surface area of the prepared samples were analysed by N2 adsorption desorption studies and the mesoporous ordering can be confirmed by low angle XRD measurementThe morphology of the prepared samples was obtained from both SEM & TEM. The elemental analysis of the samples was performed by EDX analysisThe hybrid composite formation is confirmed by FT-IR spectroscopy and X-ray photoelectron spectroscopyAll the prepared samples have been used for the photocatalytic degradation of dyes, antibiotic, endocrine disruptors and some other organic pollutants. Photocatalytic antibacterial activity studies were also performed using the prepared systemsAll the prepared samples have been used for the photocatalytic degradation of dyes, antibiotic, endocrine disruptors and some other organic pollutants. Photocatalytic antibacterial activity studies were also performed using the prepared systems Polyaniline modified TiO2 nanocomposite systems were found to have good antibacterial activity. Thermal diffusivity studies of the polyaniline modified systems were carried out using thermal lens technique. It is observed that as the amount of polyaniline in the composite increases the thermal diffusivity also increases. The prepared systems can be used as an excellent coolant in various industrial purposes. Nonlinear optical properties (3rd order nonlinearity) of the polyaniline modified systems were studied using Z scan technique. The prepared materials can be used for optical limiting Applications. Lasing studies of polyaniline modified TiO2 systems were carried out and the studies reveal that TiO2 - Polyaniline composite is a potential dye laser gain medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mangroves are diverse group of trees, palms, shrubs, and ferns that share a common ability to live in waterlogged saline soils exposed to regular flooding, and are highly specialised plants which have developed unusual adaptations to the unique environmental conditions. They are sites of accumulation and preservation of both allochthonous and autochthonous organic matter owing to their strategic loction at the interface between land and sea and prevailing reducing environment. They are among the most productive ecosystems and are efficient carbon sinks with most of the carbon stored in sediments.Mangrove ecosystems play a significant role in global carbon cycle and hence the knowledge on the processes controlling the delivery of organic matter to coastal sediments, and how these signatures are preserved in the sediment is a prerequisite for the understanding of biogeochemical cycles. The evaluation of nature and sources of organic matter can be accomplished by the determination of biochemical constituents like carbohydrates, proteins and lipids. When characterised at molecular level, lipids provide valuable information about the sources of organic matter, even though they account only small fraction of organic matter. They are useful for the paleo-environmental reconstruction because of their low reactivity, high preservation potential and high source specificity relative to other organic class of compounds. The application of recent analytical techniques has produced a wealth of useful information but has also indicated the gaps in our knowledge on cycling of organic matter in the coastal ecosystems. The quantity and quality of organic matter preserved in sediments vary depending up on the nature of material delivered to the sediment and on the depositional environment. The input from both autochthonous and allochthonous sources sharpens the complexity of biogeochemistry of mangrove ecosystem and hence bulk sedimentary parameters are not completely successful in evaluating the sources of organic matter in mangrove sediments. An effective tool for the source characterisation of organic matter in coastal ecosystems is biomarker approach. Biomarkers are chemical "signatures" present in environmental samples whose structural information can be linked to its biological precursor. The usefulness of molecular biomarkers depends on high taxonomic specificity, potential for preservation, recalcitrant against geochemical changes, easily analysable in environmental samples and should have a limited number of well-defined sources.