11 resultados para silicon carbide (SiC) thin films
em Cochin University of Science
Resumo:
This thesis Entitled Electrical switching studies on the thin flims of polyfuran and polyacrylonitrile prepared by plasma polymerisation and vacuum evaporated amorphous silicon.A general introduction to the switching and allied phenomena is presented. Subsequently, developments of switching in thin films are described. The Mott transition is qualitatively presented. The working of a switching transitor is outlined and compared to the switching observed in thin films. Characteristic parameters of switching such as threshold voltage, time response to a, voltage pulse, and delay time are described. The various switching configurations commonly used are discussed. The mechanisms used to explain the switching behaviour like thermal, electrothermal and purely electronic are reviewed. Finally the scope, feasibility and the importance of polymer thin films in switching are highlighted.
Resumo:
A brief account of the several methods used for the production of thin films is presented in this Chapter. The discussions stress on the important methods used for the fabrication of a-si:H thin films. This review' also reveals ‘that almost all the general methods, like vacuum evaporation, sputtering, glow discharge and even chemical methods are currently employed for the production of a-Si:H thin films. Each method has its own advantages and disadvantages. However, certain methods are generally preferred. Subsequently a detailed account of the method used here for the preparation of amorphous silicon thin films and their hydrogenation is presented. The metal chamber used for the electrical and dielectric measurements is also described. A brief mention is made-on the electrode structure, film area and film geometry.
Resumo:
Zinc oxide (ZnO) thin films were deposited on quartz, silicon, and polymer substrates by pulsed laser deposition (PLD) technique at different oxygen partial pressures (0.007 mbar to 0.003 mbar). Polycrystalline ZnO films were obtained at room temperature when the oxygen pressure was between 0.003 mbar and .007 mbar, above and below this pressure the films were amorphous as indicated by the X-ray diffraction (XRD). ZnO films were deposited on Al2O3 (0001) at different substrate temperatures varying from 400oC to 600oC and full width half maximum (FWHM) of XRD peak is observed to decrease as substrate temperature increases. The optical band gaps of these films were nearly 3.3 eV. A cylindrical Langmuir probe is used for the investigation of plasma plume arising from the ZnO target. The spatial and temporal variations in electron density and electron temperature are studied. Optical emission spectroscopy is used to identify the different ionic species in the plume. Strong emission lines of neutral Zn, Zn+ and neutral oxygen are observed. No electronically excited O+ cations are identified, which is in agreement with previous studies of ZnO plasma plume.
Resumo:
Chemical bath deposition (CBD)is one of the simplest, very convient and probably the cheapest method for thin film preparation. Photovoltaic is the cleanest and the most efficient mode of conversion of energy to electrical power. Silicon is the most popular material in this field. The present study on chemical bath deposited semiconducting copper selenide and iron sulfide thin films useful for photovoltaic applications. Semiconducting thin films prepared by chemical deposition find applications as photo detectors, solar control coatings and solar cells. Copper selenide is a p-type semiconductor that finds application in photovolitics. Several heterojunction systems such as Cu2-xSe/ZnSe (for injection electro luminescence), Cu2Se/AgInSe2 and Cu2Se/Si (for photodiodes), Cu2-xSe/CdS, Cu2-xSe/CdSe, CuxSe/InP and Cu2-xSe/Si for solar cells are reported. A maximum efficiency of 8.3% was achieved for the Cu2-xSe/Si cell, various preparation techniques are used for copper selenide like vacuum evaporation, direct reaction, electrodeposition and CBD. Instability of the as-prepared films was investigation and is accounted as mainly due to deviation from stoichiometry and the formation of iron oxide impurity. A sulphur annealing chamber was designed and fabricated for this work. These samples wee also analysed using optical absorption technique, XPS (X-ray Photoelectron Spectroscopy) and XRD.(X-Ray Diffraction).The pyrite films obtained by CBD technique showed amorphous nature and the electrical studies carried out showed the films to be of high resistive nature. Future work possible in the material of iron pyrite includes sulphur annealing of the non-stochiometric iron pyrite CBD thin films in the absence of atmospheric oxygen
Resumo:
In the present studies, various copper delafossite materials viz; CuAlO2, CuGaO2, CuFeO2 , CuGa1-xFexO2, CuYO2 and CuCaxY1-xO2 were synthesised by solid state reaction technique. These copper delafossite materials were grown in thin film form by rf magnetron sputtering technique. In general copper delafossites exhibit good optical transparency. The conductivity of the CuYO2 could be improved by Ca doping or by oxygen intercalation by annealing the film in oxygen atmosphere. It has so far been impossible to improve the p-type conductivity of CuGaO2 significantly by doping Mg or Ca on the Ga site. The ptype conductivity is presumed to be due to oxygen doping or Cu Vacancies [6]. Reports in literature show, oxygen intercalation or divalent ion doping on Ga site is not possible for CuGaO2 thin films to improve the p-type conductivity. Sintered powder and crystals of CuFeO2 have been reported as the materials having the highest p-type conductivity [14, 15] among the copper and silver delafossites. However the CuFeO2 films are found to be less transparent in the visible region compared to CuGaO2. Hence in the present work, the solid solution between the CuGaO2 and CuFeO2 was effected by solid state reaction, varying the Fe content. The CuGa1-xFexO2 with Fe content, x=0.5 shows an increase in conductivity by two orders, compared to CuGaO2 but the transparency is only about 50% in the visible region which is less than that of CuGaO2 The synthesis of α−AgGaO2 was carried out by two step process which involves the synthesis of β-AgGaO2 by ion exchange reaction followed by the hydrothermal conversion of the β-AgGaO2 into α-AgGaO2. The trace amount of Ag has been reduced substantially in the two step synthesis compared to the direct hydrothermal synthesis. Thin films of α-AgGaO2 were prepared on silicon and Al2O3 substrates by pulsed laser deposition. These studies indicate the possibility of using this material as p-type material in thin film form for transparent electronics. The room temperature conductivity of α-AgGaO2 was measured as 3.17 x 10-4 Scm-1and the optical band gap was estimated as 4.12 eV. A transparent p-n junction thin film diode on glass substrate was fabricated using p-type α-AgGaO2 and n-ZnO.AgCoO2 thin films with 50% transparency in the visible region were deposited on single crystalline Al2O3 and amorphous silica substrates by RF magnetron sputtering and p type conductivity of AgCoO2 was demonstrated by fabricating transparent p-n junction diode with AgCoO2 as p-side and ZnO: Al as n-side using sputtering. The junction thus obtained was found to be rectifying with a forward to reverse current of about 10 at an applied voltage of 3 V.The present study shows that silver delafossite thin films with p-type conductivity can be used for the fabrication of active devices for transparent electronics applications.
Resumo:
In the early 19th century, industrial revolution was fuelled mainly by the development of machine based manufacturing and the increased use of coal. Later on, the focal point shifted to oil, thanks to the mass-production technology, ease of transport/storage and also the (less) environmental issues in comparison with the coal!! By the dawn of 21st century, due to the depletion of oil reserves and pollution resulting from heavy usage of oil the demand for clean energy was on the rising edge. This ever growing demand has propelled research on photovoltaics which has emerged successful and is currently being looked up to as the only solace for meeting our present day energy requirements. The proven PV technology on commercial scale is based on silicon but the recent boom in the demand for photovoltaic modules has in turn created a shortage in supply of silicon. Also the technology is still not accessible to common man. This has onset the research and development work on moderately efficient, eco-friendly and low cost photovoltaic devices (solar cells). Thin film photovoltaic modules have made a breakthrough entry in the PV market on these grounds. Thin films have the potential to revolutionize the present cost structure of solar cells by eliminating the use of the expensive silicon wafers that alone accounts for above 50% of total module manufacturing cost.Well developed thin film photovoltaic technologies are based on amorphous silicon, CdTe and CuInSe2. However the cell fabrication process using amorphous silicon requires handling of very toxic gases (like phosphene, silane and borane) and costly technologies for cell fabrication. In the case of other materials too, there are difficulties like maintaining stoichiometry (especially in large area films), alleged environmental hazards and high cost of indium. Hence there is an urgent need for the development of materials that are easy to prepare, eco-friendly and available in abundance. The work presented in this thesis is an attempt towards the development of a cost-effective, eco-friendly material for thin film solar cells using simple economically viable technique. Sn-based window and absorber layers deposited using Chemical Spray Pyrolysis (CSP) technique have been chosen for the purpose
Resumo:
Thermally stable materials with low dielectric constant (k < 3.9) are being hotly pursued. They are essential as interlayer dielectrics/intermetal dielectrics in integrated circuit technology, which reduces parasitic capacitance and decreases the RC time constant. Most of the currently employed materials are based on silicon. Low k films based on organic polymers are supposed to be a viable alternative as they are easily processable and can be synthesized with simpler techniques. It is known that the employment of ac/rf plasma polymerization yields good quality organic thin films, which are homogenous, pinhole free and thermally stable. These polymer thin films are potential candidates for fabricating Schottky devices, storage batteries, LEDs, sensors, super capacitors and for EMI shielding. Recently, great efforts have been made in finding alternative methods to prepare low dielectric constant thin films in place of silicon-based materials. Polyaniline thin films were prepared by employing an rf plasma polymerization technique. Capacitance, dielectric loss, dielectric constant and ac conductivity were evaluated in the frequency range 100 Hz– 1 MHz. Capacitance and dielectric loss decrease with increase of frequency and increase with increase of temperature. This type of behaviour was found to be in good agreement with an existing model. The ac conductivity was calculated from the observed dielectric constant and is explained based on the Austin–Mott model for hopping conduction. These films exhibit low dielectric constant values, which are stable over a wide range of frequencies and are probable candidates for low k applications.
Resumo:
Conjugated polymers in the form of thin films play an important role in the field of materials science due to their interesting properties. Polymer thin films find extensive applications in the fabrication of devices, such as light emitting devices, rechargeable batteries, super capacitors, and are used as intermetallic dielectrics and EMI shieldings. Polymer thin films prepared by plasma-polymerization are highly cross-linked, pinhole free, and their permittivity lie in the ultra low k-regime. Electronic and photonic applications of plasma-polymerized thin films attracted the attention of various researchers. Modification of polymer thin films by swift heavy ions is well established and ion irradiation of polymers can induce irreversible changes in their structural, electrical, and optical properties. Polyaniline and polyfurfural thin films prepared by RF plasmapolymerization were irradiated with 92MeV silicon ions for various fluences of 1×1011 ions cm−2, 1×1012 ions cm−2, and 1×1013 ions cm−2. FTIR have been recorded on the pristine and silicon ion irradiated polymer thin films for structural evaluation. Photoluminescence (PL) spectra were recorded for RF plasma-polymerized thin film samples before and after irradiation. In this paper the effect of swift heavy ions on the structural and photoluminescence spectra of plasma-polymerized thin films are investigated.
Resumo:
We have investigated the effects of swift heavy ion irradiation on thermally evaporated 44 nm thick, amorphous Co77Fe23 thin films on silicon substrates using 100 MeV Ag7+ ions fluences of 1 1011 ions/ cm2, 1 1012 ions/cm2, 1 1013 ions/cm2, and 3 1013 ions/cm2. The structural modifications upon swift heavy irradiation were investigated using glancing angle X-ray diffraction. The surface morphological evolution of thin film with irradiation was studied using Atomic Force Microscopy. Power spectral density analysis was used to correlate the roughness variation with structural modifications investigated using X-ray diffraction. Magnetic measurements were carried out using vibrating sample magnetometry and the observed variation in coercivity of the irradiated films is explained on the basis of stress relaxation. Magnetic force microscopy images are subjected to analysis using the scanning probe image processor software. These results are in agreement with the results obtained using vibrating sample magnetometry. The magnetic and structural properties are correlated
Resumo:
Metglas 2826 MB having a nominal composition of Fe40Ni38Mo4B18 is an excellent soft magnetic material and finds application in sensors and memory heads. However, the thin-film forms of Fe40Ni38Mo4B18 are seldom studied, although they are important in micro-electro-mechanical systems/nano-electromechanical systems devices. The stoichiometry of the film plays a vital role in determining the structural and magnetic properties of Fe40Ni38Mo4B18 thin films: retaining the composition in thin films is a challenge. Thin films of 52 nm thickness were fabricated by RF sputtering technique on silicon substrate from a target of nominal composition of Fe40Ni38Mo4B18. The films were annealed at temperatures of 400 °C and 600 °C. The micro-structural studies of films using glancing x-ray diffractometer (GXRD) and transmission electron microscope (TEM) revealed that pristine films are crystalline with (FeNiMo)23B6 phase. Atomic force microscope (AFM) images were subjected to power spectral density analysis to understand the probable surface evolution mechanism during sputtering and annealing. X-ray photoelectron spectroscopy (XPS) was employed to determine the film composition. The sluggish growth of crystallites with annealing is attributed to the presence of molybdenum in the thin film. The observed changes in magnetic properties were correlated with annealing induced structural, compositional and morphological changes
Resumo:
In the early 19th century, industrial revolution was fuelled mainly by the development of machine based manufacturing and the increased use of coal. Later on, the focal point shifted to oil, thanks to the mass-production technology, ease of transport/storage and also the (less) environmental issues in comparison with the coal!! By the dawn of 21st century, due to the depletion of oil reserves and pollution resulting from heavy usage of oil the demand for clean energy was on the rising edge. This ever growing demand has propelled research on photovoltaics which has emerged successful and is currently being looked up to as the only solace for meeting our present day energy requirements. The proven PV technology on commercial scale is based on silicon but the recent boom in the demand for photovoltaic modules has in turn created a shortage in supply of silicon. Also the technology is still not accessible to common man. This has onset the research and development work on moderately efficient, eco-friendly and low cost photovoltaic devices (solar cells). Thin film photovoltaic modules have made a breakthrough entry in the PV market on these grounds. Thin films have the potential to revolutionize the present cost structure of solar cells by eliminating the use of the expensive silicon wafers that alone accounts for above 50% of total module manufacturing cost.