3 resultados para second order statistics

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study deals with the distribution theory and applications of concomitants from the Morgenstern family of bivariate distributions.The Morgenstern system of distributions include all cumulative distributions of the form FX,Y(X,Y)=FX(X) FY(Y)[1+α(1-FX(X))(1-FY(Y))], -1≤α≤1.The system provides a very general expression of a bivariate distributions from which members can be derived by substituting expressions of any desired set of marginal distributions.It is a brief description of the basic distribution theory and a quick review of the existing literature.The Morgenstern family considered in the present study provides a very general expression of a bivariate distribution from which several members can be derived by substituting expressions of any desired set of marginal distributions.Order statistics play a very important role in statistical theory and practice and accordingly a remarkably large body of literature has been devoted to its study.It helps to develop special methods of statistical inference,which are valid with respect to a broad class of distributions.The present study deals with the general distribution theory of Mk, [r: m] and Mk, [r: m] from the Morgenstern family of distributions and discuss some applications in inference, estimation of the parameter of the marginal variable Y in the Morgestern type uniform distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinetics of mercuric chloride catalysed solvolysis of l-butyl chloride, benzyl chloride. p-methylbenzyl chloride, l-phenylethyl chloride and triethylcarbinyl chloride have been studied in aq. DMSO, aq. acetonitrile and aq. ethanol. The kinetic data fit a second order rate equation in aq. DMSO. The calculated values of the second order rate coefficients increase in the case of aq. acetonitrile and aq. ethanol. The order in catalyst in 95%(v/v) aq. DMSO is less than unity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The characterization and grading of glioma tumors, via image derived features, for diagnosis, prognosis, and treatment response has been an active research area in medical image computing. This paper presents a novel method for automatic detection and classification of glioma from conventional T2 weighted MR images. Automatic detection of the tumor was established using newly developed method called Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA).Statistical Features were extracted from the detected tumor texture using first order statistics and gray level co-occurrence matrix (GLCM) based second order statistical methods. Statistical significance of the features was determined by t-test and its corresponding p-value. A decision system was developed for the grade detection of glioma using these selected features and its p-value. The detection performance of the decision system was validated using the receiver operating characteristic (ROC) curve. The diagnosis and grading of glioma using this non-invasive method can contribute promising results in medical image computing