5 resultados para robot mapping
em Cochin University of Science
Resumo:
For the scientific and commercial utilization of Ocean resources, the role of intelligent underwater robotic systems are of great importance. Scientific activities like Marine Bio-technology, Hydrographic mapping, and commercial applications like Marine mining, Ocean energy, fishing, aquaculture, cable laying and pipe lining are a few utilization of ocean resources. As most of the deep undersea exploration are beyond the reachability of divers and also as the use of operator controlled and teleoperated Remotely Operated Vehicles (ROVs) and Diver Transport Vehicles (DTVs) turn out to be highly inefficient, it is essential to have a fully automated system capable providing stable control and communication links for the unstructured undersea environment.
Resumo:
The cutoff wavenumbers of higher order modes in circular eccentric guides are computed with the variational analysis combined with a conformal mapping. A conformal mapping is applied to the variational formulation, and the variational equation is solved by the finite-element method. Numerical results for TE and TM cutoff wavenumbers are presented for different distances between the centers and ratio of the radii. Comparisons with numerical results found in the literature validate the presented method
Vegetation Mapping and Analysis of Eravikulam National Park of Kerala Using Remote Sensing Technique
Resumo:
For the discrete-time quadratic map xt+1=4xt(1-xt) the evolution equation for a class of non-uniform initial densities is obtained. It is shown that in the t to infinity limit all of them approach the invariant density for the map.
Resumo:
A new localization approach to increase the navigational capabilities and object manipulation of autonomous mobile robots, based on an encoded infrared sheet of light beacon system, which provides position errors smaller than 0.02m is presented in this paper. To achieve this minimal position error, a resolution enhancement technique has been developed by utilising an inbuilt odometric/optical flow sensor information. This system respects strong low cost constraints by using an innovative assembly for the digitally encoded infrared transmitter. For better guidance of mobile robot vehicles, an online traffic signalling capability is also incorporated. Other added features are its less computational complexity and online localization capability all these without any estimation uncertainty. The constructional details, experimental results and computational methodologies of the system are also described