1 resultado para resting interval
em Cochin University of Science
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (2)
- Aberdeen University (4)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (15)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (64)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (9)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (26)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (11)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (8)
- CUNY Academic Works (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (6)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (7)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (17)
- Instituto Politécnico do Porto, Portugal (2)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (10)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (6)
- Publishing Network for Geoscientific & Environmental Data (236)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (32)
- Queensland University of Technology - ePrints Archive (185)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (56)
- School of Medicine, Washington University, United States (3)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (10)
- Universidade Complutense de Madrid (4)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (6)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (2)
- University of Connecticut - USA (1)
- University of Michigan (12)
- University of Queensland eSpace - Australia (20)
- WestminsterResearch - UK (1)
Resumo:
In this article, we study reliability measures such as geometric vitality function and conditional Shannon’s measures of uncertainty proposed by Ebrahimi (1996) and Sankaran and Gupta (1999), respectively, for the doubly (interval) truncated random variables. In survival analysis and reliability engineering, these measures play a significant role in studying the various characteristics of a system/component when it fails between two time points. The interrelationships among these uncertainty measures for various distributions are derived and proved characterization theorems arising out of them