16 resultados para reliability test system
em Cochin University of Science
Resumo:
In the present environment, industry should provide the products of high quality. Quality of products is judged by the period of time they can successfully perform their intended functions without failure. The cause of the failures can be ascertained through life testing experiments and the times to failure due to different cause are likely to follow different distributions. Knowledge of this distribution is essential to eliminate causes of failures and thereby to improve the quality and the reliability of products. The main accomplishment expected to the study is to develop statistical tools that could facilitate solution to lifetime data arising in such and similar contexts
Resumo:
In the present scenario of energy demand overtaking energy supply top priority is given for energy conservation programs and policies. Most of the process plants are operated on continuous basis and consumes large quantities of energy. Efficient management of process system can lead to energy savings, improved process efficiency, lesser operating and maintenance cost, and greater environmental safety. Reliability and maintainability of the system are usually considered at the design stage and is dependent on the system configuration. However, with the growing need for energy conservation, most of the existing process systems are either modified or are in a state of modification with a view for improving energy efficiency. Often these modifications result in a change in system configuration there by affecting the system reliability. It is important that system modifications for improving energy efficiency should not be at the cost of reliability. Any new proposal for improving the energy efficiency of the process or equipments should prove itself to be economically feasible for gaining acceptance for implementation. In order to arrive at the economic feasibility of the new proposal, the general trend is to compare the benefits that can be derived over the lifetime as well as the operating and maintenance costs with the investment to be made. Quite often it happens that the reliability aspects (or loss due to unavailability) are not taken into consideration. Plant availability is a critical factor for the economic performance evaluation of any process plant.The focus of the present work is to study the effect of system modification for improving energy efficiency on system reliability. A generalized model for the valuation of process system incorporating reliability is developed, which is used as a tool for the analysis. It can provide an awareness of the potential performance improvements of the process system and can be used to arrive at the change in process system value resulting from system modification. The model also arrives at the pay back of the modified system by taking reliability aspects also into consideration. It is also used to study the effect of various operating parameters on system value. The concept of breakeven availability is introduced and an algorithm for allocation of component reliabilities of the modified process system based on the breakeven system availability is also developed. The model was applied to various industrial situations.
Resumo:
In this thesis T-policy is implemented to the inventory system with random lead time and also repair in the reliability of k-out-of-n system. Inventory system may be considered as the system of keeping records of the amounts of commodities in stock. Reliability is defined as the ability of an entity to perform a required function under given conditions for a given time interval. It is measured by the probability that an entity E can perform a required function under given conditions for the time interval. In this thesis considered k-out-of-n system with repair and two modes of service under T-policy. In this case first server is available always and second server is activated on elapse of T time units. The lead time is exponentially distributed with parameter and T is exponentially distributed with parameter from the epoch at which it was inactivated after completion of repair of all failed units in the previous cycle, or the moment n-k failed units accumulate. The repaired units are assumed to be as good as new. In this study , three different situations, ie; cold system, warm system and hot system. A k-out-of-n system is called cold, warm or hot according as the functional units do not fail, fail at a lower rate or fail at the same rate when system is shown as that when it is up.
Resumo:
Application of Queueing theory in areas like Computer networking, ATM facilities, Telecommunications and to many other numerous situation made people study Queueing models extensively and it has become an ever expanding branch of applied probability. The thesis discusses Reliability of a ‘k-out-of-n system’ where the server also attends external customers when there are no failed components (main customers), under a retrial policy, which can be explained in detail. It explains the reliability of a ‘K-out-of-n-system’ where the server also attends external customers and studies a multi-server infinite capacity Queueing system where each customer arrives as ordinary but can generate into priority customer which waiting in the queue. The study gives details on a finite capacity multi-server queueing system with self-generation of priority customers and also on a single server infinite capacity retrial Queue where the customer in the orbit can generate into a priority customer and leaves the system if the server is already busy with a priority generated customer; else he is taken for service immediately. Arrival process is according to a MAP and service times follow MSP.
Resumo:
This work is aimed at building an adaptable frame-based system for processing Dravidian languages. There are about 17 languages in this family and they are spoken by the people of South India.Karaka relations are one of the most important features of Indian languages. They are the semabtuco-syntactic relations between verbs and other related constituents in a sentence. The karaka relations and surface case endings are analyzed for meaning extraction. This approach is comparable with the borad class of case based grammars.The efficiency of this approach is put into test in two applications. One is machine translation and the other is a natural language interface (NLI) for information retrieval from databases. The system mainly consists of a morphological analyzer, local word grouper, a parser for the source language and a sentence generator for the target language. This work make contributios like, it gives an elegant account of the relation between vibhakthi and karaka roles in Dravidian languages. This mapping is elegant and compact. The same basic thing also explains simple and complex sentence in these languages. This suggests that the solution is not just ad hoc but has a deeper underlying unity. This methodology could be extended to other free word order languages. Since the frame designed for meaning representation is general, they are adaptable to other languages coming in this group and to other applications.
Resumo:
In this paper, we study a k-out-of-n system with single server who provides service to external customers also. The system consists of two parts:(i) a main queue consisting of customers (failed components of the k-out-of-n system) and (ii) a pool (of finite capacity M) of external customers together with an orbit for external customers who find the pool full. An external customer who finds the pool full on arrival, joins the orbit with probability and with probability 1− leaves the system forever. An orbital customer, who finds the pool full, at an epoch of repeated attempt, returns to orbit with probability (< 1) and with probability 1 − leaves the system forever. We compute the steady state system size probability. Several performance measures are computed, numerical illustrations are provided.
Resumo:
Department of Statistics, Cochin University of Science and Technology
Resumo:
One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.
Resumo:
Natural systems are inherently non linear. Recurrent behaviours are typical of natural systems. Recurrence is a fundamental property of non linear dynamical systems which can be exploited to characterize the system behaviour effectively. Cross recurrence based analysis of sensor signals from non linear dynamical system is presented in this thesis. The mutual dependency among relatively independent components of a system is referred as coupling. The analysis is done for a mechanically coupled system specifically designed for conducting experiment. Further, cross recurrence method is extended to the actual machining process in a lathe to characterize the chatter during turning. The result is verified by permutation entropy method. Conventional linear methods or models are incapable of capturing the critical and strange behaviours associated with the dynamical process. Hence any effective feature extraction methodologies should invariably gather information thorough nonlinear time series analysis. The sensor signals from the dynamical system normally contain noise and non stationarity. In an effort to get over these two issues to the maximum possible extent, this work adopts the cross recurrence quantification analysis (CRQA) methodology since it is found to be robust against noise and stationarity in the signals. The study reveals that the CRQA is capable of characterizing even weak coupling among system signals. It also divulges the dependence of certain CRQA variables like percent determinism, percent recurrence and entropy to chatter unambiguously. The surrogate data test shows that the results obtained by CRQA are the true properties of the temporal evolution of the dynamics and contain a degree of deterministic structure. The results are verified using permutation entropy (PE) to detect the onset of chatter from the time series. The present study ascertains that this CRP based methodology is capable of recognizing the transition from regular cutting to the chatter cutting irrespective of the machining parameters or work piece material. The results establish this methodology to be feasible for detection of chatter in metal cutting operation in a lathe.
Resumo:
Reliability analysis is a well established branch of statistics that deals with the statistical study of different aspects of lifetimes of a system of components. As we pointed out earlier that major part of the theory and applications in connection with reliability analysis were discussed based on the measures in terms of distribution function. In the beginning chapters of the thesis, we have described some attractive features of quantile functions and the relevance of its use in reliability analysis. Motivated by the works of Parzen (1979), Freimer et al. (1988) and Gilchrist (2000), who indicated the scope of quantile functions in reliability analysis and as a follow up of the systematic study in this connection by Nair and Sankaran (2009), in the present work we tried to extend their ideas to develop necessary theoretical framework for lifetime data analysis. In Chapter 1, we have given the relevance and scope of the study and a brief outline of the work we have carried out. Chapter 2 of this thesis is devoted to the presentation of various concepts and their brief reviews, which were useful for the discussions in the subsequent chapters .In the introduction of Chapter 4, we have pointed out the role of ageing concepts in reliability analysis and in identifying life distributions .In Chapter 6, we have studied the first two L-moments of residual life and their relevance in various applications of reliability analysis. We have shown that the first L-moment of residual function is equivalent to the vitality function, which have been widely discussed in the literature .In Chapter 7, we have defined percentile residual life in reversed time (RPRL) and derived its relationship with reversed hazard rate (RHR). We have discussed the characterization problem of RPRL and demonstrated with an example that the RPRL for given does not determine the distribution uniquely
Resumo:
The thesis entitled An Evaluation of Primary Health Care System in Kerala. The present study is intended to examine the working of primary health care system and its impact on the health status of people. The hypothesis tested in the thesis includes, a. The changes in the health profile require reallocation of resources of primary health care system, b. Rate of utilization depends on the quality of services provided by primary health centers, and c. There is a significant decline in the operational efficiency of the primary health care system. The major elements of primary health care stated in the report of AlmaAta International Conference on Primary Health Care (WHO, 1994)” is studied on the basis of the classification of the elements in to three: Preventive, Promotive, and Curative measures. Preventive measures include Maternal and Child Health Care including family Planning. Provision of water and sanitation is reviewed under promotive measures. Curative measures are studied using the disease profile of the study area. Collection of primary data was done through a sample survey, using pre-tested interview schedule of households of the study area. Multi stage random sampling design was used for selecting the sample. The design of the present study is both descriptive and analytical in nature. As far as the analytical tools are concerned, growth index, percentages, ratios, rates, time series analysis, analysis of variance, chi square test, Z test were used for analyzing the data. Present study revealed that no one in these areas was covered under any type of health insurance. Conclusion states that considering the present changes in the health profile, traditional pattern of resource allocation should be altered to meet the urgent health care needs of the people. Preventive and promotive measures like health education for giving awareness among people to change health habits, diet pattern, life style etc. are to be developed. Proper diagnosis and treatment of the disease at the beginning of the stage itself may help to cure majority of disease. For that, Public health policy must ensure the primary health care as enunciated at Alma- Ata international Conference. At the same time Public health is not to be treated as the sole responsibility of the government. Active community participation is an essential means to attain the goals.
Resumo:
This is a Named Entity Based Question Answering System for Malayalam Language. Although a vast amount of information is available today in digital form, no effective information access mechanism exists to provide humans with convenient information access. Information Retrieval and Question Answering systems are the two mechanisms available now for information access. Information systems typically return a long list of documents in response to a user’s query which are to be skimmed by the user to determine whether they contain an answer. But a Question Answering System allows the user to state his/her information need as a natural language question and receives most appropriate answer in a word or a sentence or a paragraph. This system is based on Named Entity Tagging and Question Classification. Document tagging extracts useful information from the documents which will be used in finding the answer to the question. Question Classification extracts useful information from the question to determine the type of the question and the way in which the question is to be answered. Various Machine Learning methods are used to tag the documents. Rule-Based Approach is used for Question Classification. Malayalam belongs to the Dravidian family of languages and is one of the four major languages of this family. It is one of the 22 Scheduled Languages of India with official language status in the state of Kerala. It is spoken by 40 million people. Malayalam is a morphologically rich agglutinative language and relatively of free word order. Also Malayalam has a productive morphology that allows the creation of complex words which are often highly ambiguous. Document tagging tools such as Parts-of-Speech Tagger, Phrase Chunker, Named Entity Tagger, and Compound Word Splitter are developed as a part of this research work. No such tools were available for Malayalam language. Finite State Transducer, High Order Conditional Random Field, Artificial Immunity System Principles, and Support Vector Machines are the techniques used for the design of these document preprocessing tools. This research work describes how the Named Entity is used to represent the documents. Single sentence questions are used to test the system. Overall Precision and Recall obtained are 88.5% and 85.9% respectively. This work can be extended in several directions. The coverage of non-factoid questions can be increased and also it can be extended to include open domain applications. Reference Resolution and Word Sense Disambiguation techniques are suggested as the future enhancements
Resumo:
In this paper we discuss our research in developing general and systematic method for anomaly detection. The key ideas are to represent normal program behaviour using system call frequencies and to incorporate probabilistic techniques for classification to detect anomalies and intrusions. Using experiments on the sendmail system call data, we demonstrate that we can construct concise and accurate classifiers to detect anomalies. We provide an overview of the approach that we have implemented
Resumo:
Corrosion represents one of the largest through life cost component of ships. Ship owners and operators recognize that combating corrosion significantly impacts the vessels’ reliability, availability and through life costs. Primary objective of this paper is to review various inspections, monitoring systems and life cycle management with respect to corrosion control of ships and to develop the concept of “Corrosion Health” (CH) which would quantify the extent of corrosion at any point of ships’ operational life. A system approach in which the ship structure is considered as a corrosion system and divided into several corrosion zones, with distinct characteristics, is presented. Various corrosion assessment criteria for assessment of corrosion condition are listed. A CH rating system for representation of complex corrosion condition with a numeric number along with recommendations for repair/maintenance action is also discussed
Resumo:
Software systems are progressively being deployed in many facets of human life. The implication of the failure of such systems, has an assorted impact on its customers. The fundamental aspect that supports a software system, is focus on quality. Reliability describes the ability of the system to function under specified environment for a specified period of time and is used to objectively measure the quality. Evaluation of reliability of a computing system involves computation of hardware and software reliability. Most of the earlier works were given focus on software reliability with no consideration for hardware parts or vice versa. However, a complete estimation of reliability of a computing system requires these two elements to be considered together, and thus demands a combined approach. The present work focuses on this and presents a model for evaluating the reliability of a computing system. The method involves identifying the failure data for hardware components, software components and building a model based on it, to predict the reliability. To develop such a model, focus is given to the systems based on Open Source Software, since there is an increasing trend towards its use and only a few studies were reported on the modeling and measurement of the reliability of such products. The present work includes a thorough study on the role of Free and Open Source Software, evaluation of reliability growth models, and is trying to present an integrated model for the prediction of reliability of a computational system. The developed model has been compared with existing models and its usefulness of is being discussed.