2 resultados para regulatory network
em Cochin University of Science
Resumo:
Microarray data analysis is one of data mining tool which is used to extract meaningful information hidden in biological data. One of the major focuses on microarray data analysis is the reconstruction of gene regulatory network that may be used to provide a broader understanding on the functioning of complex cellular systems. Since cancer is a genetic disease arising from the abnormal gene function, the identification of cancerous genes and the regulatory pathways they control will provide a better platform for understanding the tumor formation and development. The major focus of this thesis is to understand the regulation of genes responsible for the development of cancer, particularly colorectal cancer by analyzing the microarray expression data. In this thesis, four computational algorithms namely fuzzy logic algorithm, modified genetic algorithm, dynamic neural fuzzy network and Takagi Sugeno Kang-type recurrent neural fuzzy network are used to extract cancer specific gene regulatory network from plasma RNA dataset of colorectal cancer patients. Plasma RNA is highly attractive for cancer analysis since it requires a collection of small amount of blood and it can be obtained at any time in repetitive fashion allowing the analysis of disease progression and treatment response.
Resumo:
MicroRNAs are short non-coding RNAs that can regulate gene expression during various crucial cell processes such as differentiation, proliferation and apoptosis. Changes in expression profiles of miRNA play an important role in the development of many cancers, including CRC. Therefore, the identification of cancer related miRNAs and their target genes are important for cancer biology research. In this paper, we applied TSK-type recurrent neural fuzzy network (TRNFN) to infer miRNA–mRNA association network from paired miRNA, mRNA expression profiles of CRC patients. We demonstrated that the method we proposed achieved good performance in recovering known experimentally verified miRNA–mRNA associations. Moreover, our approach proved successful in identifying 17 validated cancer miRNAs which are directly involved in the CRC related pathways. Targeting such miRNAs may help not only to prevent the recurrence of disease but also to control the growth of advanced metastatic tumors. Our regulatory modules provide valuable insights into the pathogenesis of cancer