8 resultados para reflectance spectrum
em Cochin University of Science
Resumo:
The increasing interest in the interaction of light with electricity and electronically active materials made the materials and techniques for producing semitransparent electrically conducting films particularly attractive. Transparent conductors have found major applications in a number of electronic and optoelectronic devices including resistors, transparent heating elements, antistatic and electromagnetic shield coatings, transparent electrode for solar cells, antireflection coatings, heat reflecting mirrors in glass windows and many other. Tin doped indium oxide (indium tin oxide or ITO) is one of the most commonly used transparent conducting oxides. At present and likely well into the future this material offers best available performance in terms of conductivity and transmittivity combined with excellent environmental stability, reproducibility and good surface morphology. Although partial transparency, with a reduction in conductivity, can be obtained for very thin metallic films, high transparency and simultaneously high conductivity cannot be attained in intrinsic stoichiometric materials. The only way this can be achieved is by creating electron degeneracy in a wide bandgap (Eg > 3eV or more for visible radiation) material by controllably introducing non-stoichiometry and/or appropriate dopants. These conditions can be conveniently met for ITO as well as a number of other materials like Zinc oxide, Cadmium oxide etc. ITO shows interesting and technologically important combination of properties viz high luminous transmittance, high IR reflectance, good electrical conductivity, excellent substrate adherence and chemical inertness. ITO is a key part of solar cells, window coatings, energy efficient buildings, and flat panel displays. In solar cells, ITO can be the transparent, conducting top layer that lets light into the cell to shine the junction and lets electricity flow out. Improving the ITO layer can help improve the solar cell efficiency. A transparent ii conducting oxide is a material with high transparency in a derived part of the spectrum and high electrical conductivity. Beyond these key properties of transparent conducting oxides (TCOs), ITO has a number of other key characteristics. The structure of ITO can be amorphous, crystalline, or mixed, depending on the deposition temperature and atmosphere. The electro-optical properties are a function of the crystallinity of the material. In general, ITO deposited at room temperature is amorphous, and ITO deposited at higher temperatures is crystalline. Depositing at high temperatures is more expensive than at room temperature, and this method may not be compatible with the underlying devices. The main objective of this thesis work is to optimise the growth conditions of Indium tin oxide thin films at low processing temperatures. The films are prepared by radio frequency magnetron sputtering under various deposition conditions. The films are also deposited on to flexible substrates by employing bias sputtering technique. The films thus grown were characterised using different tools. A powder x-ray diffractometer was used to analyse the crystalline nature of the films. The energy dispersive x-ray analysis (EDX) and scanning electron microscopy (SEM) were used for evaluating the composition and morphology of the films. Optical properties were investigated using the UVVIS- NIR spectrophotometer by recording the transmission/absorption spectra. The electrical properties were studied using vander Pauw four probe technique. The plasma generated during the sputtering of the ITO target was analysed using Langmuir probe and optical emission spectral studies.
Resumo:
Biophotonics Laboratory,Centre for Earth Science Studies
Resumo:
The wavelength dependence of thermal lens signal from organic dyes are studied using dual beam thermal lens technique. It is found that the profile of thermal lens spectrum widely differ from the conventional absorption spectrum in the case of rhodamine B unlike in the case of crystal violet. This is explained on the basis of varying contribution of nonradiative relaxations from the excited vibronic levels.
Resumo:
High resolution optogalvanic spectrum of the (11, 7) band in the first positive system of nitrogen molecule has been recorded from 17179 to 17376 cm- 1. Assignment of 432 rotational lines belonging to the 27 branches of this band has been carried out.
Resumo:
The wavelength dependence of thermal lens signal from organic dyes are studied using dual beam thermal lens technique. It is found that the profile of thermal lens spectrum widely differ from the conventional absorption spectrum in the case of rhodamine B unlike in the case of crystal violet. This is explained on the basis of varying contribution of nonradiative relaxations from the excited vibronic levels.
Resumo:
Photoacoustic spectrum of samarium phthalocyanine powder is recorded and compared with previously reported UV–vis absorption spectra of the same dissolved in different liquid and solid host media. The Davidov splitting of Q band is observed in the PA spectrum but the two bands are overlapped considerably and the shorter wavelength band is more intense and dominating one in the powder spectrum.
Resumo:
Department of Mathematics, Cochin University of Science and Technology
Resumo:
Of 33 phages isolated from various shrimp farms in Kerala, India, six were segregated to have broad spectrum lytic efficiency towards 87 isolates of Vibrio harveyi with cross-infecting potential to a few other important aquaculture pathogens. They were further tested on beneficial aquaculture micro-organisms such as probiotics and nitrifying bacterial consortia and proved to be noninfective. Morphological characterization by transmission electron microscopy (TEM) and molecular characterization by RAPD and SDS-PAGE proved them distinct and positioned under Caudovirales belonging to Myoviridae and Siphoviridae