10 resultados para rare-earths in glasses

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The laser-induced luminescence studies of the rare earth titanates (R2Ti2O7) (R = La, Nd and Gd) using 355 nm radiation from an Nd:YAG laser are presented. These samples with submicron or nanometer size are prepared by the self-propagating high temperature synthesis (SHS) method and there is no known fluorescence shown by these rare earths in the visible region. Hence, the luminescence transitions shown by the La2Ti2O7 near 610 nm and Gd2Ti2O7 near 767 nm are quite interesting. Though La3+ ions with no 4f electrons have no electronic energy levels that can induce excitation and luminescence processes in the visible region, the presence of the Ti3+ ions leads to luminescence in this region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study is mainly concéntrated on the visible fluorescence of Ho3+ ,nd 3+ and Er 3+rare earths in alkaline earth fluoride hosts(caF2,srF2,BaF2) using a nitrogen laser excitation. A nitrogen laser was fabricated and its parametric studies were first carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tellurite glasses are photonic materials of special interest to the branch of optoelectronic and communication, due to its important optical properties such as high refractive index, broad IR transmittance, low phonon energy etc. Tellurite glasses are solutions to the search of potential candidates for nonlinear optical devices. Low phonon energy makes it an efficient host for dopant ions like rare earths, allowing a better environment for radiative transitions. The dopant ions maintain majority of their individual properties in the glass matrix. Tellurites are less toxic than chalcogenides, more chemically and thermally stable which makes them a highly suitable fiber material for nonlinear applications in the midinfrared and they are of increased research interest in applications like laser, amplifier, sensor etc. Low melting point and glass transition temperature helps tellurite glass preparation easier than other glass families. In order to probe into the versatility of tellurite glasses in optoelectronic industry; we have synthesized and undertaken various optical studies on tellurite glasses. We have proved that the highly nonlinear tellurite glasses are suitable candidates in optical limiting, with comparatively lower optical limiting threshold. Tuning the optical properties of glasses is an important factor in the optoelectronic research. We have found that thermal poling is an efficient mechanism in tuning the optical properties of these materials. Another important nonlinear phenomenon found in zinc tellurite glasses is their ability to switch from reverse saturable absorption to saturable absorption in the presence of lanthanide ions. The proposed thesis to be submitted will have seven chapters

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tellurite glasses are photonic materials of special interest to the branch of optoelectronic and communication, due to its important optical properties such as high refractive index, broad IR transmittance, low phonon energy etc. Tellurite glasses are solutions to the search of potential candidates for nonlinear optical devices. Low phonon energy makes it an efficient host for dopant ions like rare earths, allowing a better environment for radiative transitions. The dopant ions maintain majority of their individual properties in the glass matrix. Tellurites are less toxic than chalcogenides, more chemically and thermally stable which makes them a highly suitable fiber material for nonlinear applications in the midinfrared and they are of increased research interest in applications like laser, amplifier, sensor etc. Low melting point and glass transition temperature helps tellurite glass preparation easier than other glass families.In order to probe into the versatility of tellurite glasses in optoelectronic industry; we have synthesized and undertaken various optical studies on tellurite glasses. We have proved that the highly nonlinear tellurite glasses are suitable candidates in optical limiting, with comparatively lower optical limiting threshold. Tuning the optical properties of glasses is an important factor in the optoelectronic research. We have found that thermal poling is an efficient mechanism in tuning the optical properties of these materials. Another important nonlinear phenomenon found in zinc tellurite glasses is their ability to switch from reverse saturable absorption to saturable absorption in the presence of lanthanide ions. The proposed thesis to be submitted will have seven chapters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advent of high optical quality transparent nano—structured glasses, the so-called transparent glass ceramics or vitroceramics disclosed the possibility of producing nano-sized photonic devices based on rare-earth doped up—converters. Transparent glass ceramics have been investigated as hosts for lanthanide ions envisioning the production of materials that are easy to shape and with high performance for photonic applications. Rare earth doped glasses have been extensively studied due to their potential applications in optical devices such as solid state lasers and optical fibers. Various photothermal and optical techniques have been successfully applied for the thermal and optical characterization of these rare earth doped materials. In the present thesis, the effective thermal parameters like thermal diffusivity and thermal effusivity of complex materials for various applications have been investigated using photothermal methods along with their optical characterization utilising the common optical absorption as well as fluorescence spectroscopic techniques. These sensitive optical procedures are also essential for exploiting these materials for further photonic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rare earths have provided fascinating field for chemists confronted with problems of their separation and purification. The rare earths become available in relatively pure form in recent years due to the development of efficient separation methods, largely as a byproduct of the atomic energy programmes of various countries. The rare earths often called lanthanides from La (Z=57) to Lu (Z=7l) display subtle variation of properties through the series, while the differences become appreciable for the elements that are farther apart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Sediment budgeting studies are done to bring out the coastal processes at work, to understand the beach-innershelf sedimentary dynamics and to assess the stability of any coastal stretch. There is a dearth of such studies as far as the Indian coast is concerned. The Chavara coast of Kollam district, Kerala, is world famous for its rich heavy mineral resources. These mineral resources are being commercially mined by the Indian Rare Earths Ltd. (IREL) and Kerala Minerals and Metals Ltd. (KMML), two Public Sector Undertakings located in the area. The impact of mining on stability of the beach has been a point of debate among the local people as well as researchers. The coastal stretch of 22km length from Neendakara to Kayamkulam which is referred to as the Chavara coast. The tidal, wind driven and continental shelf currents, there could also be the contribution of coastal trapped waves and baroclinic flow associated with the plumes of fresh water coming from the estuaries. The main objectives of the study are the hydrodynamic processes and mechanism involved in the sediment movement along the Chavara coast, Identify the different sources and sinks of beach sand along the coast, Quantify the sediment input/output into/from the coast and assess the erosion/accretion scenario of the coast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lanthanum phosphate is one among the lanthanide family of “Rare Earths” following the periodic table of elements. Known under the generic name, Monazite, the rare earth phosphates have melting points above 1900 °C, high thermal phase stability, low thermal conductivity and thermal expansion coefficient similar to some of the high temperature oxides like alumina and zirconia.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Optical absorption and emission spectral studies of free and metal naphthalocyanine doped borate glass matrix are reported for the first time. Absorption spectra recorded in the UV- VIS-NIR region show the characteristic absorption bands, namely, the B-band and Q-band of the naphthalocyanine (Nc) molecule. Some of the important spectral parameters, namely, the optical absorption coefficient (α), molar extinction coefficient (ε) and absorption cross section (σa) of the principal absorption transitions are determined. Optical band gap (Eg) of the materials evaluated from the functional dependence of absorption coefficient on photon energy lies in the range 1.6 eV≤Eg≤2.1 eV. All fluorescence spectra except that of EuNc consist of an intense band in the 765 nm region corresponding to the excitation of Q-band. In EuNc the maximum fluorescence intensity band is observed at 824 nm. The intensity of the principal fluorescence band is maximum in ZnNc, whereas it is minimum in H2Nc. Radiative parameters of the principal fluorescence transitions corresponding to the Q-band excitation are also reported for the naphthalocyanine and phthalocyanine based matrices.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Optical absorption studies of free base and rare earth incorporated phthalocyanine doped borate glass matrix are reported for the first lime. The absorption spectra recorded in the UV- VIS region show two well defined absorption bands of phthalocyanine (Pc) molecule, namely the Soret band (B) and the Q band. The Q band always shows its characteristic splitting in all the doped glass matrices and the intensities of these components are found to vary from one Pc to another. Some of the important optical parameters, namely optical absorption coefficient (a), molar extinction coefficient (ε), absorption cross section (σa), oscillator strength (f), electric dipole strength (q2), absorption half bandwidth (Δλ) of the principal optical transitions have also been evaluated. Moreover, the spectral dependence of refractive index (n) and thereby the optical dielectric constant (ε) on wavelength yielded values of carrier concentration to effective mass ratio (N/m*) of the phthalocyanine molecule in the present glassy systems. Optical band gap (Eg) and width of the band tail (Et) are computed and their variations among the prepared samples are also discussed.