9 resultados para radicals

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vacuum-ultraviolet (VUV) irradiation (kexc: 172 ± 12 nm) of polystyrene films in the presence of oxygen produced not only oxidatively functionalized surfaces, but generated also morphological changes. Whereas OH- and C=O-functionalized surfaces might be used for e.g. secondary functionalization, enhanced aggregation or printing, processes leading to morphological changes open new possibilities of microstructurization. Series of experiments made under different experimental conditions brought evidence of two different reaction pathways: introduction of OH- and C=O-groups at the polystyrene pathways is mainly due to the reaction of reactive oxygen species (hydroxyl radicals, atomic oxygen, ozone) produced in the gas phase between the VUV-radiation source and the substrate. However, oxidative fragmentation leading to morphological changes, oxidation products of low molecular weight and eventually to mineralization of the organic substrate is initiated by electronic excitation of the polymer leading to C–C-bond homolysis and to a complex oxidation manifold after trapping of the C-centred radicals by molecular oxygen. The pathways of oxidative functionalization or fragmentation could be differentiated by FTIR-ATR analysis of irradiated polystyrene surfaces before and after washing with acetonitrile and microscopic fluorescence analysis of the surfaces secondarily functionalized with the N,N,N-tridodecyl-triaza-triangulenium (TATA) cation. Ozonization of the polystyrene leads to oxidative functionalization of the polymer surface but cannot initiate the fragmentation of the polymer backbone. Oxidative fragmentation is initiated by electronic excitation of the polymer (contact-mode AFM analysis), and evidence of the generation of intermediate C-centred radicals is given e.g. by experiments in the absence of oxygen leading to cross-linking (solubility effects, optical microscopy, friction-mode AFM) and disproportionation (fluorescence).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A systematic investigation of the reactivity and functionalization of two heterocyclic analogs of triphenylmethane , namely tris(2-thienyl)methane and tris(2-furyl)methane have been carried out and the results are presented in this thesis entitled "NOVEL REACTIONS OF TRIS(2-THIENYL)METHANE AND TRIS(2-FURYL)METHANE.". The history of organic free radicals dates back to Gomberg's monumental discovery of the triphenylmethyl radical in 1900. The heterocyclic analogs of triarylmethane are also interesting from the vantage point of their transformation to the corresponding radicals akin to Gomberg ' s triphenylmethyl radical and also they are prone to further transformation leading to three dimensionally elongated molecules such as dendrimers. Dendritic architectures are one of the most pervasive topologies observed in nature at the macro- and microdimensional length devices. Because of their ability to combine both organic and inorganic compounds and their propensity to either encapsulate or be engineered into unimolecular functional devices , dendrimers are versatile amongst existing nanoscale building blocks and materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wet peroxide oxidation (WPO) of phenol is an effective means for the production of diphenols, which are of great industrial importance. An added advantage of this method is the removal of phenol from wastewater effluents. Hydroxylation of phenol occurs efficiently over mixed iron aluminium pillared montmorillonites. An initial induction period is noticed in all cases. A thorough study on the reaction variables suggests free radical mechanism for the reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present investigation revealed three types of circulating haemocytes in the haemolymph of F. indicus: hyalinocytes, small-granule haemocytes, and large-granule haemocytes. Intermediate stages indicate the maturing process of a single cell. The presence of enzymes such as peroxidase, phenoloxidase and acid phosphatase in the haemocytes, and the substantial production of oxygen radicals during phagocytosis show that the haemocytes are capable of mounting a fme cellular defense mechanism. The enzyme activities of the serum and the presence of agglutinins in the serum, which may act as opsonins, agglutinate foreign particles and augment phagocytosis, confirm the presence of a superior humoral immune system in F. indicus.Bacterial infection caused considerable variations in the cellular and humoral factors, such as the number of circulating cells and haemagglutinating activity, especially in the initial hours of infection. The total haemocyte count, haemagglutination titer and phenoloxidase enzyme showed significant reductions on bacterial presence and could be used as indicators of bacterial infection.The number of circulating cells showed drastic fluctuation on exposure to pollutants. Nuvan at low concentrations was able to produce changes in the haemolymph factors and in the tissue organization, which implies that the animal is under stress and is easily prone to infections. Exposure to nuvan resulted in significant variation in all of the cellular and humoral factors, especially, the total haemocyte count, percentage of small granule haemocytes, phagocytic activity and the haemagglutinating activity, which might be good indicators of pesticide pollution. Heavy metal exposure caused significant increase in total haemocyte count and reduction in phenoloxidase enzyme activity Even changes in the physio-chemical parameters, such as salinity caused fluctuations in the defense factors, indicating stress in this euryhaline species. The dietary incorporation of a commercial immunostimulant containing P-l,3 glucan resulted in stimulation of some of the humoral defense factors of F indicus, but was time dependent. The modulations, on exposure to various external factors, in the cellular and humoral factors, especially, total haemocyte count, phagocytic activity, haemagglutinating activity and the phenoloxidase and acid phosphatase enzymes suggest that these parameters could be used as indicators of the health status of F indicus, which assist in better monitoring and effective health management of this important cultured species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study deals with the production of l-phenylflavazoles with chloro, amino, hydroxy, chloromethyl, carboxamido, trichloromethyl, N-pyrrolidyl and N-pyrrolidylmethyl groups substituted at position 3. The interconversions of 3-amino, 3-hydroxy and 3-chlorol- phenylflavazoles were also investigated. Further, an unusual phenylation reaction was found to take place if stored or air-oxidised phenylhydrazine was used as the condensing agent for the formation of flavazoles from quinoxaline-2-carboxaldehyde phenylhydrazones. By this phenylation reaction 1,3-diphenyl, l-p-tolyl-3-phenyl, l-p-chlorophenyl-3-phenyl, l-p-bromophenyl- 3-phenyl and l-phenyl-3-p-tolylflavazoles were prepared. In addition to establishing the structure of the phenylation products, the reaction was shown to take place by a free radical mechanism involving phenyl radicals formed from oxidised phenylhydrazine. Also the oxidation, reduction and bromination reactions of l-phenylflavazole were investigated. The product obtained when a mixture of l-phenylflavazole and sodium borohydride in isopropanol was heated under reflux was shown to be 2-anilinoquinoxaline-3-carboxamide which when refluxed with concentrated hydrochloric acid gave the known 2-anilinoquinoxaline. New procedures were worked out for the oxidative cyclisation reactions of quinoxaline-2carboxaldehyde phenylhydrazones to l-phenylflavazoles in excellent yields using azobenzene as a dehydrogenating agent. These cyclisations were also shown to take place, though in low Yield, if the quinoxaline2- carboxaldehyde phenylhydrazones were heated above their melting points in an atmosphere containing oxygen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Semiconductor photocatalysis has received much attention during last three decades as a promising solution for both energy generation and environmental problems. Heterogeneous photocatalytic oxidation allows the degradation of organic compounds into carbon dioxide and water in the presence of a semiconductor catalyst and UV light source. The •OH radicals formed during the photocatalytic processes are powerful oxidizing agents and can mineralise a number of organic contaminants. Titanium dioxide (TiO2), due to its chemical stability, non-toxicity and low cost represents one of the most efficient photocatalyst. However, only the ultraviolet fraction of the solar radiation is active in the photoexcitation processes using pure TiO2 and although, TiO2 can treat a wide range of organic pollutants the effectiveness of the process for pollution abatement is still low. A more effective and efficient catalyst therefore must be formulated. Doping of TiO2 was considered with the aim of improving photocatalytic properties. In this study TiO2 catalyst was prepared using the sol-gel method. Metal and nonmetal doped TiO2 catalysts were prepared. The photoactivity of the catalyst was evaluated by the photodegradation of different dyes and pesticides in aqueous solution. High photocatalytic degradation of all the pollutants was observed with doped TiO2. Structural and optical properties of the catalysts were characterized using XRD, BET surface area, UV-Vis. DRS, CHNS analysis, SEM, EDX, TEM, XPS, FTIR and TG. All the catalysts showed the anatase phase. The presence of dopants shifts the absorption of TiO2 into the visible region indicating the possibility of using visible light for photocatalytic processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of lasers of three wavelengths in the visible region - 476, 488 and 514 nm on mitotic and meiotic cell divisions, growth, yield and activity of specific enzymes were studied in two taxonomically diverse plant species — A/lium cepa L. and Vicia faba. The effect of laser exposures was compared with the effect of two physical mutagens (Gamma and Ultraviolet radiations) and two chemical mutagens (Ethyl Methane Sulphonate and Hydroxyl amine). The study indicated that lasers could be mutagenic causing aberration in the mitotic and meiotic cell divisions while also producing changes in the growth and yield of the plants. Lasers of higher wavelengths 488 and 514 nm caused aberrations in the early stages of mitotic cell division whereas lasers of lower wavelengths (476 nm) caused more aberrations in the later stages of mitotic cell division. Laser exposure of 488 nm wavelength at power density 400 mW induced higher mitotic and meiotic aberrations and also induced higher pollen sterility than lasers of 476 and 514 nm. The frequency of mitotic aberrations induced by lasers was lesser than that caused by y-irradiation but comparable to that induced by EMS and HA. Lasers cause mutations in higher frequencies than UV. Lasers had a stimulatory effect on growth and yield in both plant species. This stimulatory effect of lasers on germination could not however be correlated to the activity of amylase and protease, the key enzymes in seed gennination. Enzymes such as peroxidase and catalase, involved in scavenging of free oxygen radicals often produced by irradiation, did not show increased activity in laser irradiated samples. Further studies are required for elucidating the exact mechanisms by which lasers cause mutations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pollution of water with pesticides has become a threat to the man, material and environment. The pesticides released to the environment reach the water bodies through run off. Industrial wastewater from pesticide manufacturing industries contains pesticides at higher concentration and hence a major source of water pollution. Pesticides create a lot of health and environmental hazards which include diseases like cancer, liver and kidney disorders, reproductive disorders, fatal death, birth defects etc. Conventional wastewater treatment plants based on biological treatment are not efficient to remove these compounds to the desired level. Most of the pesticides are phyto-toxic i.e., they kill the microorganism responsible for the degradation and are recalcitrant in nature. Advanced oxidation process (AOP) is a class of oxidation techniques where hydroxyl radicals are employed for oxidation of pollutants. AOPs have the ability to totally mineralise the organic pollutants to CO2 and water. Different methods are employed for the generation of hydroxyl radicals in AOP systems. Acetamiprid is a neonicotinoid insecticide widely used to control sucking type insects on crops such as leafy vegetables, citrus fruits, pome fruits, grapes, cotton, ornamental flowers. It is now recommended as a substitute for organophosphorous pesticides. Since its use is increasing, its presence is increasingly found in the environment. It has high water solubility and is not easily biodegradable. It has the potential to pollute surface and ground waters. Here, the use of AOPs for the removal of acetamiprid from wastewater has been investigated. Five methods were selected for the study based on literature survey and preliminary experiments conducted. Fenton process, UV treatment, UV/ H2O2 process, photo-Fenton and photocatalysis using TiO2 were selected for study. Undoped TiO2 and TiO2 doped with Cu and Fe were prepared by sol-gel method. Characterisation of the prepared catalysts was done by X-ray diffraction, scanning electron microscope, differential thermal analysis and thermogravimetric analysis. Influence of major operating parameters on the removal of acetamiprid has been investigated. All the experiments were designed using central compoiste design (CCD) of response surface methodology (RSM). Model equations were developed for Fenton, UV/ H2O2, photo-Fenton and photocatalysis for predicting acetamiprid removal and total organic carbon (TOC) removal for different operating conditions. Quality of the models were analysed by statistical methods. Experimental validations were also done to confirm the quality of the models. Optimum conditions obtained by experiment were verified with that obtained using response optimiser. Fenton Process is the simplest and oldest AOP where hydrogen peroxide and iron are employed for the generation of hydroxyl radicals. Influence of H2O2 and Fe2+ on the acetamiprid removal and TOC removal by Fenton process were investigated and it was found that removal increases with increase in H2O2 and Fe2+ concentration. At an initial concentration of 50 mg/L acetamiprid, 200 mg/L H2O2 and 20 mg/L Fe2+ at pH 3 was found to be optimum for acetamiprid removal. For UV treatment effect of pH was studied and it was found that pH has not much effect on the removal rate. Addition of H2O2 to UV process increased the removal rate because of the hydroxyl radical formation due to photolyis of H2O2. An H2O2 concentration of 110 mg/L at pH 6 was found to be optimum for acetamiprid removal. With photo-Fenton drastic reduction in the treatment time was observed with 10 times reduction in the amount of reagents required. H2O2 concentration of 20 mg/L and Fe2+ concentration of 2 mg/L was found to be optimum at pH 3. With TiO2 photocatalysis improvement in the removal rate was noticed compared to UV treatment. Effect of Cu and Fe doping on the photocatalytic activity under UV light was studied and it was observed that Cu doping enhanced the removal rate slightly while Fe doping has decreased the removal rate. Maximum acetamiprid removal was observed for an optimum catalyst loading of 1000 mg/L and Cu concentration of 1 wt%. It was noticed that mineralisation efficiency of the processes is low compared to acetamiprid removal efficiency. This may be due to the presence of stable intermediate compounds formed during degradation Kinetic studies were conducted for all the treatment processes and it was found that all processes follow pseudo-first order kinetics. Kinetic constants were found out from the experimental data for all the processes and half lives were calculated. The rate of reaction was in the order, photo- Fenton>UV/ H2O2>Fenton> TiO2 photocatalysis>UV. Operating cost was calculated for the processes and it was found that photo-Fenton removes the acetamiprid at lowest operating cost in lesser time. A kinetic model was developed for photo-Fenton process using the elementary reaction data and mass balance equations for the species involved in the process. Variation of acetamiprid concentration with time for different H2O2 and Fe2+ concentration at pH 3 can be found out using this model. The model was validated by comparing the simulated concentration profiles with that obtained from experiments. This study established the viability of the selected AOPs for the removal of acetamiprid from wastewater. Of the studied AOPs photo- Fenton gives the highest removal efficiency with lowest operating cost within shortest time.