3 resultados para radical exchange reactions
em Cochin University of Science
Resumo:
A systematic investigation of the reactivity and functionalization of two heterocyclic analogs of triphenylmethane , namely tris(2-thienyl)methane and tris(2-furyl)methane have been carried out and the results are presented in this thesis entitled "NOVEL REACTIONS OF TRIS(2-THIENYL)METHANE AND TRIS(2-FURYL)METHANE.". The history of organic free radicals dates back to Gomberg's monumental discovery of the triphenylmethyl radical in 1900. The heterocyclic analogs of triarylmethane are also interesting from the vantage point of their transformation to the corresponding radicals akin to Gomberg ' s triphenylmethyl radical and also they are prone to further transformation leading to three dimensionally elongated molecules such as dendrimers. Dendritic architectures are one of the most pervasive topologies observed in nature at the macro- and microdimensional length devices. Because of their ability to combine both organic and inorganic compounds and their propensity to either encapsulate or be engineered into unimolecular functional devices , dendrimers are versatile amongst existing nanoscale building blocks and materials.
Resumo:
The study deals with the production of l-phenylflavazoles with chloro, amino, hydroxy, chloromethyl, carboxamido, trichloromethyl, N-pyrrolidyl and N-pyrrolidylmethyl groups substituted at position 3. The interconversions of 3-amino, 3-hydroxy and 3-chlorol- phenylflavazoles were also investigated. Further, an unusual phenylation reaction was found to take place if stored or air-oxidised phenylhydrazine was used as the condensing agent for the formation of flavazoles from quinoxaline-2-carboxaldehyde phenylhydrazones. By this phenylation reaction 1,3-diphenyl, l-p-tolyl-3-phenyl, l-p-chlorophenyl-3-phenyl, l-p-bromophenyl- 3-phenyl and l-phenyl-3-p-tolylflavazoles were prepared. In addition to establishing the structure of the phenylation products, the reaction was shown to take place by a free radical mechanism involving phenyl radicals formed from oxidised phenylhydrazine. Also the oxidation, reduction and bromination reactions of l-phenylflavazole were investigated. The product obtained when a mixture of l-phenylflavazole and sodium borohydride in isopropanol was heated under reflux was shown to be 2-anilinoquinoxaline-3-carboxamide which when refluxed with concentrated hydrochloric acid gave the known 2-anilinoquinoxaline. New procedures were worked out for the oxidative cyclisation reactions of quinoxaline-2carboxaldehyde phenylhydrazones to l-phenylflavazoles in excellent yields using azobenzene as a dehydrogenating agent. These cyclisations were also shown to take place, though in low Yield, if the quinoxaline2- carboxaldehyde phenylhydrazones were heated above their melting points in an atmosphere containing oxygen.