22 resultados para quantum phase transition
em Cochin University of Science
Resumo:
D.C. and a.c. electrical conductivities, dielectric constant and dielectric loss factor in single crystals of ethylenediammonium sulphate, (H3NCH2CH2NH3)(SO4), have been measured axiswise as a function of temperature. Anomalous variations in all the above properties at 480 K indicate the occurrence of a phase transition in the above material at this temperature. The existence of such a phase transition is also confirmed by DSC measurements. Electrical conductivity results are analysed and the activation energies of conduction at different temperature regions have been evaluated from the logσ vs 103T−1 plot. Possible mechanisms for the electrical conduction process are discussed, the available results being in favour of a proton transport model.
Resumo:
The thesis deals with certain quantum field systems exhibiting spontaneous symmetry breaking and their response to temperature. These models find application in diverse branches such as particle physics, solid state physics and non~linear optics. The nature of phase transition that these systems may undergo is also investigated. The thesis contains seven chapters. The first chapter is introductory and gives a brief account of the various phenomena associated with spontaneous symmetry breaking. The chapter closes with anote on the effect of temperature on quantum field systems. In chapter 2, the spontaneous symmetry breaking phenomena are reviewed in more detail. Chapter 3, deals with the formulation of ordinary and generalised sine-Gordon field theories on a lattice and the study of the nature of phase transition occurring in these systems. In chapter 4, the effect of temperature on these models is studied, using the effective potential method. Chapter 5 is a continuation of this study for another model, viz, the m6 model. The nature of phase transition is also studied. Chapters 5 and 6 constitute a report of the investigations on the behaviour of coupling constants under thermal excitation D1 $4 theory, scalar electrodynamics, abelian and non-abelian gauge theories
Ultrasonic Study Of The Elastic Properties And Phase Transitions In Selected Mixed Sulphate Crystals
Resumo:
The thesis investigated the elastic properties and phase transitions in selected mixed sulphate crystals – Lithium Hydrazinium Sulphate [LiN2H2SO4], Lithium Ammonium Sulphate [LiNH4SO4] and Lithium Potassium Sulphate [LiKSO4] – using ultrasonic technique. The pulse echo overlap technique has been used for measuring ultrasonic velocity and its dependence on temperature along different directions with waves of longitudinal and transverse polarizations. Two major numerical techniques and the corresponding computer programs developed as part of present work are presented in this thesis. All the 9 elastic constants of LHS are determined accurately from ultrasonic measurements and applying misorientation correction refines the constants. Ultrasonic measurements are performed in LAS to determine the elastic constants and to study the low temperature phase transitions. Temperature variation studies of elastic constant of LAS are performed for 6 different modes of propagation for heating and cooling at low temperatures. All the 5 independent elastic constants of LPS is determined using ultrasonic measurements. It is concluded that LPS crystal does not undergo a phase transition near this temperature. A comparison of the three crystals studied shows that LPS has maximum number of phase transitions and LHS has the least number. It is interesting to note that LPS has the simplest formula unit among the three. There is considerable scope for the future work on these crystals and others belonging to the sulphate family.
Resumo:
A detailed ultrasonic study of the elastic properties of lithium ammonium sulfate ~LiNH4SO4! or LAS has been carried out below room temperature. The elastic constants of LAS at room temperature are reported. The discrepancy present in earlier elastic constant data associated with the different choice of axes for this orthorhombic system are clarified. The results of the temperature variation study down to 220 K confirm the ferroelastic phase transition at 285 K and establish a thermal hysteresis of about 2.5 K between the cooling and heating cycles. Results of the investigation on the suspected weak phase transition at 256 K suggest that this transition occurs at 242 K on cooling and at 256 K on heating, thus having a thermal hysteresis of about 14 K. However, since the observed elastic anomaly for this transition is very small, the nature of this transition still remains unclear
Resumo:
The thermal transport properties, thermal diffusivity, thermal conductivity and specific heat capacity of Dicalcium Lead Propionate (DLP) crystal have been measured following a modified photopyroelectric thermal wave method. The measurements have been carried out with thermal waves propagating along the three principal symmetry directions, so as to bring out the anisotropy in these parameters. The variations of the above parameters through two prominent phase transition temperatures of this crystal have also been measured to understand the variation of these parameters as it undergoes ferroelectric phase transitions. In addition, complete thermal analysis and FTIR measurements have been done on the crystal to bring out the correlation of these results with the corresponding thermal transport properties. All these results are presented and discussed. The data presented in this paper form a comprehensive set of results on the thermal transport properties of this crystal.
Resumo:
DC and AC electrical conductivity measurements in single crystals of diammonium hydrogen phosphate along the c axis show anomalous variations at 174, 246 and 416 K. The low-frequency dielectric constant also exhibits peaks exactly at these temperatures with a thermal hysteresis of 13 degrees C for the peak at 416 K. These specific features of the electrical properties are in agreement with earlier NMR second-moment data and can be identified with three distinct phase transitions that occur in the crystal. The electrical conductivity values have been found to increase linearly with impurity concentration in specimens doped with a specific amount of SO42- ions. The mechanisms of the phase transition and of the electrical conduction process are discussed in detail.
Resumo:
This thesis presents in detail. the theoretical developments and calculations which are used for the simultaneous determination of thermal parameters, namely thermal diffusivity (a). thermal effusivity (e), thermal conductivity (K) and heat capacity (cr ) employing photopyroelectric technique. In our calculations. we have assumed that the pyroelectric detector is supported on a copper backing. so that there will be sufficient heat exchange between the heated pyroelectric detector and the backing so that the signal fluctuations are reduced to a minimum. Since the PPE signal depends on the properties of the detector that are also temperature dependent. a careful temperature calibration of the system need to be carried out. APPE cell has been fabricated for the measurements that can be used to measure the thermal properties of solid samples from ~ 90 K to ~ 350 K. The cell has been calibrated using standard samples and the accuracy of the technique is found to be of the order of± 1%.In this thesis, we have taken up work n photopyroelectric investigation of thermal parameters of ferroelectric crystals such as Glycine phosphite (NH3CH2COOH3P03), Triglycine sulfate and Thiourea as well as mixed valence perovskites samples such as Lead doped Lanthanum Manganate (Lal_xPb~Mn03) Calcium doped (Lal_xCaxMnOJ) and Nickel doped Lanthanum Stroncium Cobaltate (Lao~Sro5Ni,Col_x03).The three ferroelectric crystals are prepared by the slow evaporation technique and the mixed valence perovskites by solid state reaction technique.Mixed valence perovskites, with the general formula RI_xA~Mn03 (R = La. Nd or Pr and A = Ba, Ca, Sr or Pb) have been materials of intense experimental and theoretical studies over the past few years. These materials show . colossal magneloresis/ance' (CMR) in samples with 0.2 < x < 0.5 in such a doping region, resistivity exhibits a peak at T = T p' the metal - insulator transition temperature. The system exhibits metallic characteristics with d %T > Oabove Tp (wherep is the resistivity) and insulating characteristics with d % T < 0 above T p. Despite intensive investigations on the CMR phenomena and associated electrical properties. not much work has been done on the variation of thermal properties of these samples. We have been quite successful in finding out the nature of anomaly associated with thermal properties when the sample undergoes M-I transition.The ferroelectric crystal showing para-ferroelectric phase transitions - Glycine phosphite. Thiourea and Triglycine sulfate - are studied in detail in order to see how well the PPE technique enables one to measure the thermal parameters during phase transitions. It is seen that the phase transition gets clearly reflected in the variation of thermal parameters. The anisotropy in thermal transport along different crystallographic directions are explained in terms of the elastic anisotropy and lattice contribution to the thermal conductivity. Interesting new results have been obtained on the above samples and are presented in three different chapters of the thesis.In summary. we have carried investigations of the variations of the thermal parameters during phase transitions employing photopyroelectric technique. The results obtained on different systems are important not only in understanding the physics behind the transitions but also in establishing the potentiality of the PPE tool. The full potential of PPE technique for the investigation of optical and thermal properties of materials still remains to be taken advantage of by workers in this field.
Resumo:
Anomalous variations of d.c. electrical conductivity with temperature are observed in ammonium sulphate single crystals, suggesting a possible phase transition at 150°C. Measurements of thermally stimulated current also support these results. The mechanism of electrical conduction is explained on the basis of studies made on doped and quenched crystals.
Resumo:
Results of axiswise measurements of the electrical conductivity (dc and ac) and dielectric constant of NH4H2PO4 confirm the occurrence of the recently suggested high‐temperature phase transition in this crystal (at 133 °C). The corresponding transition in ND4D2PO4 observed here for the first time takes place at 141.5 °C. The mechanism involved in these transitions and those associated with the electrical conduction and dielectric anomalies are explained on the basis of the motional effects of the ammonium ions in these crystals. Conductivity values for deuterated crystals give direct evidence for the predominance of protonic conduction throughout the entire range of temperatures studied (30–260 °C).
Resumo:
dc and ac electrical conductivities, dielectric constant and dielectric loss factor in single crystals of ethylenediammonium dinitrate (EDN) have been measured axiswise as a function of temperature. All the above properties exhibit anomalous variations at 404 K thereby confirming the occurence of a phase transition in EDN at this temperature. Electrical conductivity parameters have been evaluated and possible conduction mechanisms are discussed. The role of protons in electrical trasport phenomenon is established by chemical analysis.
Resumo:
Measurements of dc conductivity and dielectric constant show that deuteration causes an upward shift of the high temperature phase transition point from 186.5 to 191°C and a downward shift of the low temperature transition point from 10 to -1.5°C in LiNH4SO4. Mechanisms of phase transitions and of electrical transport in the crystal are discussed.
Resumo:
In the present thesis a series of exhaustive investigations have been carried out on a number of crystalline samples with special reference tx> the jphase transitions exhibited by them. These include single crystals of pure, doped or deuterated specimens of certain ammonium containing crystals viz., (NH )34H(SO4)2, (NH4)2HPO4, (NH4)2Cr2O7 znui NH4H2PO4. ac/dc electrical conductivity, dielectric constant, ionic thermocurrent as wwifil as photoacoustic measurements have been carried out on most of them over a wide range of temperature. In addition investigations have been carried out in pure and doped single crystals of NaClO3 and NaNO3 using ionic thermocurrent measurements and these are presented here. Special attention has been paid to reveal the mechanism of electrical conduction in various phases of "these crystals and to evaluate the different parameters involved in the conduction as well as phase transition process. The thesis contains ten chapters ‘
Resumo:
One of the interesting consequences of Einstein's General Theory of Relativity is the black hole solutions. Until the observation made by Hawking in 1970s, it was believed that black holes are perfectly black. The General Theory of Relativity says that black holes are objects which absorb both matter and radiation crossing the event horizon. The event horizon is a surface through which even light is not able to escape. It acts as a one sided membrane that allows the passage of particles only in one direction i.e. towards the center of black holes. All the particles that are absorbed by black hole increases the mass of the black hole and thus the size of event horizon also increases. Hawking showed in 1970s that when applying quantum mechanical laws to black holes they are not perfectly black but they can emit radiation. Thus the black hole can have temperature known as Hawking temperature. In the thesis we have studied some aspects of black holes in f(R) theory of gravity and Einstein's General Theory of Relativity. The scattering of scalar field in this background space time studied in the first chapter shows that the extended black hole will scatter scalar waves and have a scattering cross section and applying tunneling mechanism we have obtained the Hawking temperature of this black hole. In the following chapter we have investigated the quasinormal properties of the extended black hole. We have studied the electromagnetic and scalar perturbations in this space-time and find that the black hole frequencies are complex and show exponential damping indicating the black hole is stable against the perturbations. In the present study we show that not only the black holes exist in modified gravities but also they have similar properties of black hole space times in General Theory of Relativity. 2 + 1 black holes or three dimensional black holes are simplified examples of more complicated four dimensional black holes. Thus these models of black holes are known as toy models of black holes in four dimensional black holes in General theory of Relativity. We have studied some properties of these types of black holes in Einstein model (General Theory of Relativity). A three dimensional black hole known as MSW is taken for our study. The thermodynamics and spectroscopy of MSW black hole are studied and obtained the area spectrum which is equispaced and different thermo dynamical properties are studied. The Dirac perturbation of this three dimensional black hole is studied and the resulting quasinormal spectrum of this three dimensional black hole is obtained. The different quasinormal frequencies are tabulated in tables and these values show an exponential damping of oscillations indicating the black hole is stable against the mass less Dirac perturbation. In General Theory of Relativity almost all solutions contain singularities. The cosmological solution and different black hole solutions of Einstein's field equation contain singularities. The regular black hole solutions are those which are solutions of Einstein's equation and have no singularity at the origin. These solutions possess event horizon but have no central singularity. Such a solution was first put forward by Bardeen. Hayward proposed a similar regular black hole solution. We have studied the thermodynamics and spectroscopy of Hay-ward regular black holes. We have also obtained the different thermodynamic properties and the area spectrum. The area spectrum is a function of the horizon radius. The entropy-heat capacity curve has a discontinuity at some value of entropy showing a phase transition.