1 resultado para processus de Wiener
em Cochin University of Science
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (6)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (14)
- Aston University Research Archive (5)
- B-Digital - Universidade Fernando Pessoa - Portugal (10)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (26)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (17)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (11)
- CentAUR: Central Archive University of Reading - UK (12)
- Center for Jewish History Digital Collections (9)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (74)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (10)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (5)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (207)
- Dokumentenserver der Akademie der Wissenschaften zu Göttingen (1)
- Duke University (3)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (5)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (38)
- Institutional Repository of Leibniz University Hannover (1)
- Memoria Académica - FaHCE, UNLP - Argentina (4)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Publishing Network for Geoscientific & Environmental Data (4)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (28)
- Queensland University of Technology - ePrints Archive (21)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (10)
- Repositorio Institucional de la Universidad Nacional Agraria (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (1)
- Repositorio Institucional Universidad de Medellín (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (47)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Pará (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (41)
- Université de Montréal, Canada (216)
- Université Laval Mémoires et thèses électroniques (12)
- University of Innsbruck Digital Library - Austria (1)
- University of Michigan (82)
Resumo:
Given a graph G and a set X ⊆ V(G), the relative Wiener index of X in G is defined as WX (G) = {u,v}∈X 2 dG(u, v) . The graphs G (of even order) in which for every partition V(G) = V1 +V2 of the vertex set V(G) such that |V1| = |V2| we haveWV1 (G) = WV2 (G) are called equal opportunity graphs. In this note we prove that a graph G of even order is an equal opportunity graph if and only if it is a distance-balanced graph. The latter graphs are known by several characteristic properties, for instance, they are precisely the graphs G in which all vertices u ∈ V(G) have the same total distance DG(u) = v∈V(G) dG(u, v). Some related problems are posed along the way, and the so-called Wiener game is introduced.