5 resultados para post harvest
em Cochin University of Science
Resumo:
Vibrio are important during hatchery rearing. aquaculture phase and post-harvest quality of shrimps. Vibrio spp are of concern to shrimp farmers and hatchery operators because certain species can cause Vibriosis. Vibrio species are of concern to humans because certain species cause serious diseases.With the progress in aquaculture, intensive systems used for shrimp aquaculture create an artificial environment that increases bacterial growth. To maintain the productivity of such an intensive aquaculture, high inputs of fish protein have to be employed for feeding together with high levels of water exchange and the massive use of antibiotics/ probiotics / chemicals. It seems that the combination of these conditions favours the proliferation of vibrios and enhances their virulence and disease prevalence. The risk of a microbial infection is high, mainly at larval stages. The effect and severity are related to Vibrio species and dose, water, feed, shrimp quality and aquaculture management.Consumption of seafood can occasionally result in food-bome illnesses due to the proliferation of indigenous pathogens like Vibrio.Of the l2 pathogenic Vibrio species, 8 species are known to be directly food associated. Strict quality guidelines have been laid by the importing nations, for the food products that enter their markets. The microbiological quality requirement for export of frozen shrimp products is that V.cholerae, V.parahaemolyticus and V. vulnificus should be absent in 25g of the processed shrimp (Export Inspection Council of India, 1995). The mere presence of these pathogenic Vibrios is sufficient for the rejection of the exported product.The export rejections cause serious economic loss to the shrimp industry and might harm the brand image of the shrimp products from the countiy.There is a need for an independent study on the incidence of different pathogenic vibrios in shrimp aquaculture and investigate their biochemical characteristics to have a better understanding about the growth and survival of these organisms in the shrimp aquaculture niche. PCR based methods (conventional PCR, duplex PCR, multiplex-PCR and Real Time PCR) for the detection of the pathogenic Vibrios is important for rapid post-harvest quality assessment. Studies on the genetic heterogeneity among the specific pathogenic vibrio species isolated from shrimp aquaculture system provide; valuable information on the extent of genetic diversity of the pathogenic vibrios, the shrimp aquaculture system.So the present study was undertaken to study the incidence of pathogenic Vibrio spp. in Penaeus monodon shrimp hatcheries and aquaculture farms, to carry out biochemical investigations of the pathogenic Vibrio spp isolated from P. monodon hatchery and. aquaculture environments, to assess the effect of salt (NaCl) on the growth and enzymatic activities of pathogenic Vibrio spp., to study the effect of preservatives, and chemicals on the growth of pathogenic Vibrio spp. and to employ polymerase chain reaction (PCR) methods for the detection of pathogenic V ibrio spp.Samples of water (n=7) and post-larvae (n=7) were obtained from seven Penaeus monodon hatcheries and samples of water (n=5), sediment (n=5) and shrimp (n=5) were obtained from five P. monodon aquaculture farms located on the East Coast of lndia. The microbiological examination of water, sediment, post-larvae and shrimp samples was carried out employing standard methods and by using standard media.The higher bacterial loads were obtained in pond sediments which can be attributed to the accumulation of organic matter at the pond bottom which stimulated bacterial growth.Shrimp head. (4.78 x 105 +/- 3.0 x 104 cfu/g) had relatively higher bacterial load when compared to shrimp muscle 2.7 x 105 +/- 1.95 x 104 cfu/g). ln shrimp hatchery samples, the post-larvae (2.2 x 106 +/- 1.9 x 106 cfu/g) had higher bacterial load than water (5.6 x 103 +/- 3890 cfu/ml).The mean E.coli counts were higher in aquaculture pond sediment (204+/-13 cfu/g) and pond water (124+/-88 cfu/ml). Relatively lower Escherichia coli counts were obtained from shrimp samples (12+/-11 to 16+/-16.7 cfu/g). The presence of E.coli in aquaculture environment might have been from the source water. E.coli was not detected in hatchery waters and post-larvae.
Resumo:
The thesis entitled "Studies on improved practices of prawn farming for higher production in central Kerala" prepared by the author describes various practices prevailing in the study area in order to elucidate their relative merits. The study on semi-intensive farming at Mundapuram, Kannur was also carried out and included in the thesis for comparison.The author felt it important to make a critical study of the existing culture practices in the central Kerala, a region where it has been existing since time immemorial.Careful analysis of data accrued by the author has helped him to identify strength, weakness, opportunities and threats confronting the shrimp farming. As a result it was possible to evolve an appropriate management technology taking into consideration the various ecological (location specific), social and economical conditions prevalent in the vast study area.
Resumo:
This thesis Entitled distribution ,diversity and biology of deep-sea fishes the indian Eez.Fishing rights and responsibilities it entails in the deep-sea sector has been a vexed issue since the mid-nineties and various stakeholders have different opinion on the modalities of harnessing the marine fisheries wealth, especially from the oceanic and deeper waters. The exploitation and utilization of these esources requires technology development and upgradation in harvest and post-harvest areas; besides shore infrastructure for berthing, handling, storing and processing facilities. At present, although deep-sea fishes don’t have any ready market in our country it can be converted into value added products. Many problems have so far confronted the deep-sea fishing sector not allowing it to reach its full potential. Hence, there should be a sound deep-sea fishing policy revolving round the upgradation of the capabilities of small scale fishermen, who have the inherent skills but do not have adequate support to develop themselves and to acquire vessels having the capability to operate in farther and deeper waters. Prospects for the commercial exploitation and utilization of deep-sea fishes were analyzed using SWOL analysis.
Resumo:
Prevalence and antibiotic resistance of Escherichia coli in the water and sediment samples of brackish water aquaculture ponds adjacent to Cochin backwaters was analysed. More than 50% of the water samples and more than 80% of sediment samples from all the sampling stations were tested positive for £. coli. Risk assessment of the E. coli strains was carried out using multiple antibiotic resistance (MAR) indexing. Majority of the strains were found to be multiple antibiotic resistant suggesting their origin from high risk sources of contamination such as human where antibiotics are frequently used. While none of the £. coli strains were resistant against amikacin, chloramphenicol, streptomycin and trimethoprim, considerable levels of resistance was encountered against ampicillin, erythromycin, penicillin G and vancomycin. High prevalence of £. coli in the water and sediment samples of this extensive brackish water ponds indicates high degree of faecal pollution of this environment. The high risk nature of the strains warrants efficient post harvest and processing measures to avoid health risk to consumers
Resumo:
Globally most of the conventional fish stocks have reached a state of optimum exploitation or even over-exploitation; efficient utilization of non-conventional resources is necessary to meet the supply-demand gap for protein supply. Mesopelagic fishes can be considered as one such promising resource for the future, if appropriate harvest and post-harvest technologies are developed. Increasing human population and increasing demand for cheaper food fishes has made myctophids a possible potential resource for future exploitation and utilization. Earlier studies indicated the abundance of Diaphus spp. in the eastern and northeastern Arabian Sea. The present study also indicates the dominance of Diaphus spp. in the deep sea trawling grounds of south west coast of India. Commercial viability of the myctophid fishing in the Indian waters has to be worked out. The present catch estimation is based on the Stratified Random Sampling Method from the landing data. As the coverage of sampling area was limited and the gear efficiency was not standardized, the data generated are not precise. A counter check for the estimates is also not possible due to the absence of comparable works in the study area. Fish biomass estimation by acoustics survey coupled with direct fishing would only confirm the accuracy of estimates. Exploratory surveys for new fishing areas to be continued, for gathering the distribution, abundance, biological and ecological data and map the potential fishing ground on a GIS platform and the data should be provided to the commercial entrepreneurs. Generally non-conventional and non-targeted resources are under low fishing pressure and exploitation rates. Low values of fishing mortality and exploitation rates indicate that removal from the stock by fishing was only nominal from the present fishing grounds. The results indicate that the stock is almost at virgin state and remains grossly underexploited. Since the extent of distribution and abundance of the stock in the ecosystem remains to be ascertained, sustainable yield could not be estimated. Also the impact of myctophids harvest, on other commercially important fishes, has to be studied.