6 resultados para population parameters
em Cochin University of Science
Resumo:
In the present study two aspects of cephalopod fishery such as (i) landings and (ii) utilization including export of cephalopods from Indian are dealt with. Under the topic landings, craft, both traditional and mechanized and fishing techniques employed for capturing cephalopods are discussed. General trend in cephalopod landing in India and particularly south west coast, species composition, description and geographic distribution of important species of cuttle fishes, squids and octopus and the distribution and abundance of cephalopods along the continental shelf of the south west coast are also discussed. Some biological aspects like population parameters, maturation and spawning, food and feeding of the two representive species of cuttle fishes and squid viz, Sepia pharaonis and Loligo duvauceli are studied.Under utilization, general handling and processing of various frozen cephalopods products for exports and commercial operation in a typical plant are studied. The export of cephalopod products since its commencement is studied in detail and market strategy for enhancing the export are suggested.
Resumo:
Preliminary investigations revealed that 3. hamrur is the predominant species along the east and west coasts of India while other species are sparsely distributed and occur sporadically. In the present investigation, aspects such as population parameters, breeding and feeding biology, fishery etc. of _l:. hamrur of the north east coast of India (Fig.1) are dealt with. Studies on the distribution, abundance and stock size of priacanthids all along the Indian waters were undertaken. Taxonomic studies of the priacanthid species encountered during the study from the Indian waters is also attempted
Resumo:
This doctoral thesis addresses the growing concern about the significant changes in the climatic and weather patterns due to the aerosol loading that have taken place in the Indo Gangetic Plain(IGP)which includes most of the Northern Indian region. The study region comprises of major industrial cities in India (New Delhi, Kanpur, Allahabad, Jamshedpur and Kolkata). Northern and central parts of India are one of the most thickly populated areas in the world and have the most intensely farmed areas. Rapid increase in population and urbanization has resulted in an abrupt increase in aerosol concentrations in recent years. The IGP has a major source of coal; therefore most of the industries including numerous thermal power plants that run on coal are located around this region. They inject copious amount of aerosols into the atmosphere. Moreover, the transport of dust aerosols from arid locations is prevalent during the dry months which increase the aerosol loading in theatmosphere. The topography of the place is also ideal for the congregation of aerosols. It is bounded by the Himalayas in the north, Thar Desert in the west, the Vindhyan range in the south and Brahmaputra ridge in the east. During the non‐monsoon months (October to May) the weather in the location is dry with very little rainfall. Surface winds are weak during most of the time in this dry season. The aerosols that reach the location by means of long distance transport and from regional sources get accumulated under these favourable conditions. The increase in aerosol concentration due to the complex combination of aerosol transport and anthropogenic factors mixed with the contribution from the natural sources alters the optical properties and the life time of clouds in the region. The associated perturbations in radiative balance have a significant impact on the meteorological parameters and this in turn determines the precipitation forming process. Therefore, any change in weather which disturbs the normal hydrological pattern is alarming in the socio‐economic point of view. Hence, the main focus of this work is to determine the variation in transport and distribution of aerosols in the region and to understand the interaction of these aerosols with meteorological parameters and cloud properties.
Resumo:
This thesis deals with the population characteristics of Artemia and the effect of different environmental parameters on the different stages of Artemia in a salina at Tuticorin, south east coast of India. The present investigation was carried out from 1985 to I987. The study was initiated by undertaking a survey to find out suitable Artemia habitats along the south east coast of India and a perennial salina with an area of 0.25 ha was selected at Karapad (Tuticorin). Weekly samplings were made for two full calender years (1986-87) to collect the different stages of Artemia population as well as the different environmental parameters. The thesis comprises of the following sections: Introduction, materials and methods, systematics, biology and distribution of Artemia, results and discussion, summary and bibliography. The section on results and discussion gives the characteristics of Artemia population in the salina, the seasonal variations of different environmental parameters in the salina and their effects on different stages of Artemia population. Description of an experiment conducted to show the sudden changes of salinity on different stages of Artemia is also given as a separate section.
Resumo:
Ozone present in the atmosphere not only absorbs the biologically harmful ultraviolet radiation but also is an important ingredient of the climate system. The radiative absorption properties of ozone make it a determining factor in the structure of the atmosphere. Ozone in the troposphere has many negative impacts on humans and other living beings. Another significant aspect is the absorption of outgoing infrared radiation by ozone thus acting as a greenhouse gas. The variability of ozone in the atmosphere involves many interconnections with the incoming and outgoing radiation, temperature circulation etc. Hence ozone forms an important part of chemistry-climate as well as radiative transfer models. This aspect also makes the quantification of ozone more important. The discovery of Antarctic ozone hole and the role of anthropogenic activities in causing it made it possible to plan and implement necessary preventive measures. Continuous monitoring of ozone is also necessary to identify the effect of these preventive steps. The reactions involving the formation and destruction of ozone are influenced significantly by the temperature fluctuations of the atmosphere. On the other hand the variations in ozone can change the temperature structure of the atmosphere. Indian subcontinent is a region having large weather and climate variability which is evident from the large interannual variability of monsoon system over the region. Nearly half of Indian region comprises the tropical region. Most of ozone is formed in the tropical region and transported to higher latitudes. The formation and transport of ozone can be influenced by changes in solar radiation and various atmospheric circulation features. Besides industrial activities and vehicular traffic is more due to its large population. This may give rise to an increase in the production of tropospheric ozone which is greenhouse gas. Hence it becomes necessary to monitor the atmospheric ozone over this region. This study probes into the spatial distribution and temporal evolution of ozone over Indian subcontinent and discusses the contributing atmospheric parameters.
Resumo:
Ozone present in the atmosphere not only absorbs the biologically harmful ultraviolet radiation but also is an important ingredient of the climate system. The radiative absorption properties of ozone make it a determining factor in the structure of the atmosphere. Ozone in the troposphere has many negative impacts on humans and other living beings. Another significant aspect is the absorption of outgoing infrared radiation by ozone thus acting as a greenhouse gas. The variability of ozone in the atmosphere involves many interconnections with the incoming and outgoing radiation, temperature circulation etc. Hence ozone forms an important part of chemistry-climate as well as radiative transfer models. This aspect also makes the quantification of ozone more important. The discovery of Antarctic ozone hole and the role of anthropogenic activities in causing it made it possible to plan and implement necessary preventive measures. Continuous monitoring of ozone is also necessary to identify the effect of these preventive steps. The reactions involving the formation and destruction of ozone are influenced significantly by the temperature fluctuations of the atmosphere. On the other hand the variations in ozone can change the temperature structure of the atmosphere. Indian subcontinent is a region having large weather and climate variability which is evident from the large interannual variability of monsoon system over the region. Nearly half of Indian region comprises the tropical region. Most of ozone is formed in the tropical region and transported to higher latitudes. The formation and transport of ozone can be influenced by changes in solar radiation and various atmospheric circulation features. Besides industrial activities and vehicular traffic is more due to its large population. This may give rise to an increase in the production of tropospheric ozone which is greenhouse gas. Hence it becomes necessary to monitor the atmospheric ozone over this region. This study probes into the spatial distribution and temporal evolution of ozone over Indian subcontinent and discusses the contributing atmospheric parameters.