43 resultados para polyethylene film
em Cochin University of Science
Resumo:
Structural, electronic, and optical properties of amorphous and transparent zinc tin oxide films deposited on glass substrates by pulsed laser deposition (PLD) were examined for two chemical compositions of Zn:Sn=1:1 and 2:1 as a function of oxygen partial pressure PO2 used for the film deposition and annealing temperature. Different from a previous report on sputter-deposited films Chiang et al., Appl. Phys. Lett. 86, 013503 2005 , the PLD-deposited films crystallized at a lower temperature 450 °C to give crystalline ZnO and SnO2 phases. The optical band gaps Tauc gaps were 2.80−2.85 eV and almost independent of oxygen PO2 , which are smaller than those of the corresponding crystals 3.35−3.89 eV . Films deposited at low PO2 showed significant subgap absorptions, which were reduced by postthermal annealing. Hall mobility showed steep increases when carrier concentration exceeded threshold values and the threshold value depended on the film chemical composition. The films deposited at low PO2 2 Pa had low carrier concentrations. It is thought that the low PO2 produced high-density oxygen deficiencies and generated electrons, but these electrons were trapped in localized states, which would be observed as the subgap absorptions. Similar effects were observed for 600 °C crystallized films and their resistivities were increased by formation of subgap states due to the reducing high-temperature condition. High carrier concentrations and large mobilities were obtained in an intermediate PO2 region for the as-deposited films.
Resumo:
Latex waste like glove waste was effectively modified using a new reclaiming agent, thiocarbanilide. This modified waste was blended with linear low-density polyethylene (LLDPE) to develop a novel thermoplastic elastomer. Both uncrosslinked and dynamically crosslinked blends were prepared and their properties were studied. The results were found to be comparable to those of conventional thermoplastic elastomers.
Resumo:
The effects of modifying blends of poly(vinyl chloride) (PVC) with linear low density polyethylene (LLDPE) by means of acrylic acid, maleic anhydride, phenolic resins and p-phenylene diamine were investigated. Modification by acrylic acid and maleic anhydride in the presence of dicumyl peroxide was found to be the most useful procedure for improving the mechanical behaviour and adhesion properties of the blend. The improvement was found to be due mainly to the grafting of the carboxylic acid to the polymer chains; grafting was found to be more effective in LLDPE/PVC blends than in pure LLDPE.
Resumo:
The mechanical properties of filled natural rubber latex vulcanizates were found to be improved by the addition of polyethylene glycols of different molecular weight and glycerol. There is a slight reduction in the optimum cure times of the compounds containing PEG/Glycerol. The morphology study shows that the filler distribution is more uniform in the compounds containing PEG/Glycerol.
Resumo:
Microcellular (MC) soles based on polybutadiene (BR) and low-density polyethylene (LDPE) blends for low-temperature applications were developed. A part of BR in BR-LDPE blend was replaced by natural rubber (NR) for property improvement. The BR-NR-LDPE blend-based MC sole shows good technical properties. Sulphur curing and DCP curing were tried in BR-LDPE and NR-BR-LDPE blends. Study shows that sulphur-cured MC sheets possess better technical properties than DCPcured MC sheets. 90/10 BR-LDPE and 60/30/10 BR-NR-LDPE blend combinations are found to be suitable for low-temperature applications.
Resumo:
Latex waste products contain rubber hydrocarbon of very high quality, which is only lightly cross linked. Selected wastes such as thread waste and glove waste were modified into processable materials by a novel economic process and thermoplastic elastomers were prepared by blending these modified waste materials with high density polyethylene in various proportions. The mechanical properties as well as the rheological behaviour of these blends were evaluated and compared with those of the natural rubber-high density polyethylene blends.
Resumo:
Metallic glass alloy Metglas 2826 MB based amorphous magnetic thin films were fabricated by the thermal evaporation technique. Transmission electron micrographs and electron diffraction pattern showed the amorphous nature of the films. Composition of the films was analyzed employing x-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy techniques. The film was integrated to a long period fibre grating. It was observed that the resonance wavelength of the fibre grating decreased with an increase in the magnetic field. Change in the resonance wavelength was minimal at higher magnetic fields. Field dependent magnetostriction values revealed the potential application of these films in magnetostrictive sensor devices
Resumo:
We present a compact solid-state laser based on leaky mode propagation from a dye-doped polymer free-standing film waveguide. The edge emitted spectrum clearly indicated the existence of periodic resonant modes. The reflections from the lateral faces of the free-standing film provided the optical feedback thus giving rise to a Fabry–Perot like optical cavity. This together with the guidance through the gain medium gave rise to intense narrow emission lines. For a pump energy of 1.82 mJ/pulse, an intense line with FWHM ∼0.4 nmwas observed at 576.5 nm.
Resumo:
We present a compact solid-state laser based on leaky mode propagation from a dye-doped polymer free-standing film waveguide. The edge emitted spectrum clearly indicated the existence of periodic resonant modes. The reflections from the lateral faces of the free-standing film provided the optical feedback thus giving rise to a Fabry–Perot like optical cavity. This together with the guidance through the gain medium gave rise to intense narrow emission lines. For a pump energy of 1.82 mJ/pulse, an intense line with FWHM ∼0.4 nmwas observed at 576.5 nm.
Resumo:
We present a compact solid-state laser based on leaky mode propagation from a dye-doped polymer free-standing film waveguide. The edge emitted spectrum clearly indicated the existence of periodic resonant modes. The reflections from the lateral faces of the free-standing film provided the optical feedback thus giving rise to a Fabry–Perot like optical cavity. This together with the guidance through the gain medium gave rise to intense narrow emission lines. For a pump energy of 1.82 mJ/pulse, an intense line with FWHM ∼0.4 nmwas observed at 576.5 nm.
Loss characterization in rhodamine 6G doped polymer film waveguide by side illumination fluorescence
Resumo:
We report the position dependent tuning of fluorescence emission from rhodamine 6G doped polymethylmethacrylate film waveguide using a side illumination technique. The transmitted fluorescence as a function of the distance from the point of illumination is measured by translating the waveguide horizontally across a monochromatic light source. This technique has been utilized to characterize the optical loss in dye doped waveguides. We observe that the optical loss coefficients for shorter and longer distances of propagation through the dye doped waveguide are different. At longer distance of propagation a decrease in optical loss coefficient is observed
Resumo:
In the present work, structural, optical and electrical properties of indium sulfide are tuned by specific and controlled doping. Silver, tin, copper and chlorine were used as the doping elements. In2S3 thin films for the present study were prepared using a simple and low cost “Chemical Spray Pyrolysis (CSP)” technique. This technique is adaptable for large-area deposition of thin films in any required shape and facilitates easiness of doping and/or variation of atomic ratio. It involves spraying a solution, usually aqueous, containing soluble salts of the constituents of the desired compound onto a heated substrate. Doping process was optimized for different doping concentrations. On optimizing doping conditions, we tuned the structural, optical and electrical properties of indium sulfide thin films making them perform as an ideal buffer layer.
Resumo:
Low-protein content natural rubber latex was produced by using a nonionic surfactant-polyethylene glycol (PEG). Extractable protein content of natural rubber latex was found to decrease with PEG treatment and reduction increased with increase in the molecular weight of PEG. The low-protein latex samples were characterized by tensile testing, Fourier transform infrared and thermogravimetric analysis. The results have shown 35% reduction in the extractable protein content, without any compromise on the mechanical properties of the latex; however, thermal stability of low-protein latex was found to be reduced marginally with PEG treatment.