13 resultados para poly(phenylene vinylene) and derivatives
em Cochin University of Science
Resumo:
Poly(o-toluidine) (PoT) and poly(o-toluidine co aniline) were prepared by using ammonium persulfate initiator, in the presence of 1M HCI. It was dried under different conditions: room temperature drying (48 h), oven drying (at 50°C for 12 h), or vacuum drying (under vacuum, at room temperature for 16 h). The dielectric properties, such as dielectric loss, conductivity, dielectric constant, dielectric heating coefficient, loss tangent, etc., were studied at microwave frequencies. A cavity perturbation technique was used for the study. The dielectric properties were found to be related to the frequency and drying conditions. Also, the copolymer showed better properties compared to PoT alone.
Resumo:
In this introduction part, importance has been given to the elastomeric properties of polyurethanes. Emphasis has been laid to this property based on microphase separation and how this could be modified by modifying the segment lengths, as well as the structure of the segments. Implication was also made on the mechanical and thermal properties of these copolymers based on various analytical methods usually used for characterization of polymers. A brief overview of the challenges faced by the polyurethane chemistry was also done, pointing to the fact that though polyurethane industry is more than 75 years old, still a lot of questions remain unanswered, that too mostly in the synthesis of polyurethanes. A major challenge in this industry is the utilization of more environmental friendly “Green Chemistry Routes” for the synthesis of polyurethanes which are devoid of any isocyanates or harsh solvents.The research work in this thesis was focused to develop non-isocyanate green chemical process for polyurethanes and also self-organize the resultant novel polymers into nano-materials. The thesis was focused on the following three major aspects:(i) Design and development of novel melt transurethane process for polyurethanes under non-isocyanate and solvent free melt condition. (ii) Solvent induced self-organization of the novel cycloaliphatic polyurethanes prepared by the melt transurethane process into microporous templates and nano-sized polymeric hexagons and spheres. (iii) Novel polyurethane-oligophenylenevinylene random block copolymer nano-materials and their photoluminescence properties. The second chapter of the thesis gives an elaborate discussion on the “Novel Melt Transurethane Process ” for the synthesis of polyurethanes under non-isocyanate and solvent free melt condition. The polycondensation reaction was carried out between equimolar amounts of a di-urethane monomer and a diol in the presence of a catalyst under melt condition to produce polyurethanes followed by the removal of low boiling alcohol from equilibrium. The polymers synthesized through this green chemical route were found to be soluble (devoid of any cross links), thermally stable and free from any isocyanate entities. The polymerization reaction was confirmed by various analytical techniques with specific references to the extent of reaction which is the main watchful point for any successful polymerization reaction. The mechanistic aspects of the reaction were another point of consideration for the novel polymerization route which was successfully dealt with by performing various model reactions. Since this route was successful enough in synthesizing polyurethanes with novel structures, they were employed for the solvent induced self-organization which is an important area of research in the polymer world in the present scenario. Chapter three mesmerizes the reader with multitudes of morphologies depending upon the chemical backbone structure of the polyurethane as well as on the nature and amount of various solvents employed for the self-organization tactics. The rationale towards these morphologies-“Hydrogen Bonding ” have been systematically probed by various techniques. These polyurethanes were then tagged with luminescent 0ligo(phenylene vinylene) units and the effects of these OPV blocks on the morphology of the polyurethanes were analyzed in chapter four. These blocks have resulted in the formation of novel “Blue Luminescent Balls” which could find various applications in optoelectronic devices as well as delivery vehicles.
Resumo:
The present work reports the synthesis of 2-ary1—3—oxo-3—pyrazolino[3,4-b]quinoxalines for the first time. These compounds have been prepared by the reaction of ethyl 2-chloroquinoxaline—3—carboxylate with different phenylhydrazines. 2-Aryl—3-oxo—3—pyrazolino[3,4—b]quinoxalines are generally light yellow in either neutral or acid solutions but changed the colour to deep violet or green in basic media. The change in colour appears to be sharp and therefore these compounds may be used as acid base indicators. Their UV absorption maxima under acidic and basic media are also very different. However, the actual conditions under which these compounds may be used as indicators have not been worked out. The synthesis and reactions of a new heterocyclic system, lH—l,5—benzodiazepino[2,3—b]quinoxaline is also reported here. This novel nitrogen heterocycke was prepared by the condensation of ethyl 2-chloroquinoxaline-3—carboxylate with o-phenylene diamine and subsequent manipulationsa to give the parent compound. Several derivatives which are expected tx> have valuable biological properties have also beenlreported. The structures of all new compounds have been established by elemental analysis and also by analysing their spectral data smch as ultraviolet, infrared, nuclear magnetic resonance and mass spectrometry. Compounds obtained from this work will be submitted for screening their biological properties.
Resumo:
A new photopolymerizable recording media is introduced based on poly (vinyl alcohol) and vinyl acetate sensitized with methylene blue. It is observed that this MBPVA/VAc system can be reused a number of times without significant decrease in diffraction efficiency. The PVA-VAc ratio was optimized at 2:1. Diffraction efficiency of 6.3% was obtained without any fixing at a dye concentration of 9.3 10 4 mol/l at an exposure of 750 mJ/cm2. The material is attractive on account of its reusability.
Resumo:
A new photopolymerizable recording media is introduced based on poly (vinyl alcohol) and vinyl acetate sensitized with methylene blue. It is observed that this MBPVA/VAc system can be reused a number of times without significant decrease in diffraction . The PVA-VAc ratio was optimized at 2:1. Diffraction efficiency of 6.3% was obtained without any fixing at a dye concentration of 9.3 10 4 mol/l at an exposure of 750 mJ/cm2. The material is attractive on account of its reusability.
Resumo:
The present work is to impart radiopacity in various natural polymers like chitosan, natural rubber and derivatives of chitosan and to characterize it. This thesis collated the radiopaque properties of these radiopaque polymers and various technological applications in the medical field. The applications of radiopaque polymers leads to an exploitation of radiopaque properties like X-ray visibility, optical density, effective atomic number, attenuation coefficient of biopolymers like chitosan, chitosan formate, chitosan acetate, carboxy methyl chitosan and natural rubber. The radiopaqe properties of these materials highly depend upon the size, shape, amount of radiopacifier and crystallinity of the radiopaque material. Radiopaque chitosan microspheres were prepared by cross linking with glutaraldehyde followed by the encapsulation of barium sulpahte. The effect of different emulsion systems on the morphology of chitosan microspheres were studied. The study concentrates radiopaque natural rubber for shielding applications. It reveals that to improve the particle size, morphology and crystalline phase of the zinc oxide particles, a novel method for the preparation of zinc oxide is adopted. A detailed radiopacity study was done in natural rubber containing 100phr precipitated zinc oxide prepared from different zinc salts. One of the significant findings of this investigation is that NR vulcanizates containing precipitated zinc oxide (from zinc acetate) shows higher attenuation coefficient. These interesting findings reveal the applications of these natural radiopaque systems in various fields like surgical tools, medical tubings, catheters, radiation shielding,etc.
Resumo:
A new photopolymerizable recording media is introduced based on poly (vinyl alcohol) and vinyl acetate sensitized with methylene blue. It is observed that this MBPVA/VAc system can be reused a number of times without significant decrease in diffraction efficiency. The PVA-VAc ratio was optimized at 2:1. Diffraction efcienc4y of 6.3% was obtained without any fixing at a dye concentration of 9.3 x 10- mol/l at an exposure of 750mJ/cm2. The material is attractive on account of its reusability.
Resumo:
A new photopolymerizable recording media is introduced based on poly (vinyl alcohol) and vinyl acetate sensitized with methylene blue. It is observed that this MBPVA/VAc system can be reused a number of times without significant decrease in diffraction efficiency. The PVA-VAc ratio was optimized at 2:1. Diffraction efcienc4y of 6.3% was obtained without any fixing at a dye concentration of 9.3 x 10- mol/l at an exposure of 750mJ/cm2. The material is attractive on account of its reusability.
Resumo:
A new photopolymerizable recording media is introduced based on poly (vinyl alcohol) and vinyl acetate sensitized with methylene blue. It is observed that this MBPVA/VAc system can be reused a number of times without significant decrease in diffraction efficiency. The PVA-VAc ratio was optimized at 2:1. Diffraction efcienc4y of 6.3% was obtained without any fixing at a dye concentration of 9.3 x 10- mol/l at an exposure of 750mJ/cm2. The material is attractive on account of its reusability.
Resumo:
LLDPE was blended with poly (vinyl alcohol) and mechanical, thermal, spectroscopic properties and biodegradability were investigated. The biodegradability of LLDPE/PVA blends has been studied in two environments, viz. (1) a culture medium containing Vibrio sp. and (2) a soil environment over a period of 15 weeks. Nanoanatase having photo catalytic activity was synthesized by hydrothermal method using titanium-iso-propoxide. The synthesized TiO2 was characterized by X-Ray diffraction (XRD), BET studies, FTIR studies and scanning electron microscopy (SEM). The crystallite size of titania was calculated to be ≈ 6nm from the XRD results and the surface area was found to be about 310m2/g by BET method. SEM shows that nanoanatase particles prepared by this method are spherical in shape. Linear low density polyethylene films containing polyvinyl alcohol and a pro-oxidant (TiO2 or cobalt stearate with or without vegetable oil) were prepared. The films were then subjected to natural weathering and UV exposure followed by biodegradation in culture medium as well as in soil environment. The degradation was monitored by mechanical property measurements, thermal studies, rate of weight loss, FTIR and SEM studies. Higher weight loss, texture change and greater increments in carbonyl index values were observed in samples containing cobalt stearate and vegetable oil. The present study demonstrates that the combination of LLDPE/PVA blends with (I) nanoanatase/vegetable oil and (ii) cobalt stearate/vegetable oil leads to extensive photodegradation. These samples show substantial degradation when subsequent exposure to Vibrio sp. is made. Thus a combined photodegradation and biodegradation process is a promising step towards obtaining a biodegradable grade of LLDPE.
Resumo:
There is an enormous demand for chemical sensors in many areas and disciplines including chemistry, biology, clinical analysis, environmental science. Chemical sensing refers to the continuous monitoring of the presence of chemical species and is a rapidly developing field of science and technology. They are analytical devices which transform chemical information generating from a reaction of the analyte into an measurable signal. Due to their high selectivity, sensitivity, fast response and low cost, electrochemical and fluorescent sensors have attracted great interest among the researchers in various fields. Development of four electrochemical sensors and three fluorescent sensors for food additives and neurotransmitters are presented in the thesis. Based on the excellent properties of multi walled carbon nanotube (MWCNT), poly (L-cysteine) and gold nanoparticles (AuNP) four voltammetric sensors were developed for various food additives like propyl gallate, allura red and sunset yellow. Nanosized fluorescent probes including gold nanoclusters (AuNCs) and CdS quantum dots (QDs) were used for the fluorescent sensing of butylated hydroxyanisole, dopamine and norepinephrine. A total of seven sensors including four electrochemical sensors and three fluorescence sensors have been developed for food additives and neurotransmitters.
Resumo:
The nanosecond optical-limiting characteristics (at 532 nm) of some rare-earth metallo-phthalocyanines (Sm(Pc)2, Eu(Pc)2, and LaPc) doped in a copolymer matrix of poly(methyl methacrylate) and methyl-2-cyanoacrylate have been studied for the first time to our knowledge. The optical-limiting response is attributed to reverse saturable absorption due to excited-state absorption. The performance of LaPc in a copolymer host is studied at different linear transmissions. The laser damage thresholds of all the samples are also reported.
Resumo:
In this study, pendant epoxy functional poly dimethyl siloxanes were synthesized by the hydrosilylation reaction of pendant silyl hydride functional polydimethyl siloxane with allyl glycidyl ether. The hydrosilylation reaction was characterized by spectroscopic techniques. Samples of pendant epoxy functional poly dimethyl siloxanes and pendant silyl hydride functional polydimethyl siloxane were blended with commercial epoxy resin, diglycidyl ether of bis-phenol A, at various ratios using a polyamine as curing agent. The results show that the addition of functionalised poly dimethyl siloxanes increases the flexibility of the cross linked network and also the thermal stability and water resistance