9 resultados para plasma light propagation

em Cochin University of Science


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis deals with the study of light beam propagation through different nonlinear media. Analytical and numerical methods are used to show the formation of solitonS in these media. Basic experiments have also been performed to show the formation of a self-written waveguide in a photopolymer. The variational method is used for the analytical analysis throughout the thesis. Numerical method based on the finite-difference forms of the original partial differential equation is used for the numerical analysis.In Chapter 2, we have studied two kinds of solitons, the (2 + 1) D spatial solitons and the (3 + l)D spatio-temporal solitons in a cubic-quintic medium in the presence of multiphoton ionization.In Chapter 3, we have studied the evolution of light beam through a different kind of nonlinear media, the photorcfractive polymer. We study modulational instability and beam propagation through a photorefractive polymer in the presence of absorption losses. The one dimensional beam propagation through the nonlinear medium is studied using variational and numerical methods. Stable soliton propagation is observed both analytically and numerically.Chapter 4 deals with the study of modulational instability in a photorefractive crystal in the presence of wave mixing effects. Modulational instability in a photorefractive medium is studied in the presence of two wave mixing. We then propose and derive a model for forward four wave mixing in the photorefractive medium and investigate the modulational instability induced by four wave mixing effects. By using the standard linear stability analysis the instability gain is obtained.Chapter 5 deals with the study of self-written waveguides. Besides the usual analytical analysis, basic experiments were done showing the formation of self-written waveguide in a photopolymer system. The formation of a directional coupler in a photopolymer system is studied theoretically in Chapter 6. We propose and study, using the variational approximation as well as numerical simulation, the evolution of a probe beam through a directional coupler formed in a photopolymer system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser induced plasma (LIP) emissions from some metal oxide targets were studied with corresponding metal targets of pure quality as a reference. Atomic emissions in the visible region were used in the spectroscopic procedures of LIP characterization. The studies were meant to throw light into LIP dynamics and they provided many experimental results which improved the general awareness of plasma state.When target materials were photo-ablated with an energetically suitable laser pulse, they developed electric charges in them.An electrical signal which was delivered from the target served as an alternative probe signal for the diagnostics of LIP and to track different charged states in the plasma. The signal showed a double peak distribution with positive polarity and a modified time of flight with various voltage levels of a given polarity.The expansion dynamics of LIP in magnetic field were also investigated by monitoring the voltage transients generated at the target.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photothermal effect refers to heating of a sample due to the absorption of electromagnetic radiation. Photothermal (PT) heat generation which is an example of energy conversion has in general three kinds of applications. 1. PT material probing 2. PT material processing and 3. PT material destruction. The temperatures involved increases from 1-. 3. Of the above three, PT material probing is the most important in making significant contribution to the field of science and technology. Photothermal material characterization relies on high sensitivity detection techniques to monitor the effects caused by PT material heating of a sample. Photothermal method is a powerful high sensitivity non-contact tool used for non-destructive thermal characterization of materials. The high sensitivity of the photothermal methods has led to its application for analysis of low absorbance samples. Laser calorimetry, photothermal radiometry, pyroelectric technique, photoacoustic technique, photothermal beam deflection technique, etc. come under the broad class ofphotothermal techniques. However the choice of a suitable technique depends upon the nature of the sample, purpose of measurement, nature of light source used, etc. The present investigations are done on polymer thin films employing photothermal beam deflection technique, for the successful determination of their thermal diffusivity. Here the sample is excited by a He-Ne laser (A = 6328...\ ) which acts as the pump beam. Due to the refractive index gradient established in the sample surface and in the adjacent coupling medium, another optical beam called probe beam (diode laser, A= 6500A ) when passed through this region experiences a deflection and is detected using a position sensitive detector and its output is fed to a lock-in amplifier from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the signal is suitably analysed for determining the thermal diffusivity.The production of polymer thin film samples has gained considerable attention for the past few years. Plasma polymerization is an inexpensive tool for fabricating organic thin films. It refers to formation of polymeric materials under the influence of plasma, which is generated by some kind of electric discharge. Here plasma of the monomer vapour is generated by employing radio frequency (MHz) techniques. Plasma polymerization technique results in homogeneous, highly adhesive, thermally stable, pinhole free, dielectric, highly branched and cross-linked polymer films. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer.Near IR overtone investigations on some organic molecules using local mode model are also done. Higher vibrational overtones often provide spectral simplification and greater resolution of peaks corresponding to nonequivalent X-H bonds where X is typically C, N or O. Vibrational overtone spectroscopy of molecules containing X-H oscillators is now a well established tool for molecular investigations. Conformational and steric differences between bonds and structural inequivalence ofCH bonds (methyl, aryl, acetylenic, etc.) are resolvable in the higher overtone spectra. The local mode model in which the X-H oscillators are considered to be loosely coupled anharmonic oscillators has been widely used for the interpretation of overtone spectra. If we are exciting a single local oscillator from the vibrational ground state to the vibrational state v, then the transition energy of the local mode overtone is given by .:lE a......v = A v + B v2 • A plot of .:lE / v versus v will yield A, the local mode frequency as the intercept and B, the local mode diagonal anharmonicity as the slope. Here A - B gives the mechanical frequency XI of the oscillator and B = X2 is the anharmonicity of the bond. The local mode parameters XI and X2 vary for non-equivalent X-H bonds and are sensitive to the inter and intra molecular environment of the X-H oscillator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma generated by fundamental radiation from a Nd:YAG laser focused onto a graphite target is studied spectroscopically. Measured line profiles of several ionic species were used to infer electron temperature and density at several sections located in front of the target surface. Line intensities of successive ionization states of carbon were used for electron temperature calculations. Stark broadened profiles of singly ionized species have been utilized for electron density measurements. Electron density as well as electron temperature were studied as functions of laser irradiance and time elapsed after the incidence of laser pulse. The validity of the assumption of local thermodynamic equilibrium is discussed in light of the results obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central theme of the work presented in this thesis is a careful investigation of the factors influencing the attenuation of laser beam through sea water. The thesis presents a detailed report of the work done by the author on the attenuation studies in sea water and on laser propagation through a turbulent medium. The thesis contains six chapters which are more or less self-contained with separate abstracts and references. The first chapter is divided into two parts. The first part introduces the subject of laser propagation through sea water. It includes a brief description of optical properties of sea water followed by a review of the earlier works on attenuation studies in water. The second part gives the theoretical background of the problem of laser propagation through a turbulent medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinearity is a charming element of nature and Nonlinear Science has now become one of the most important tools for the fundamental understanding of the nature. Solitons— solutions of a class of nonlinear partial differential equations — which propagate without spreading and having particle— like properties represent one of the most striking aspects of nonlinear phenomena. The study of wave propagation through nonlinear media has wide applications in different branches of physics.Different mathematical techniques have been introduced to study nonlinear systems. The thesis deals with the study of some of the aspects of electromagnetic wave propagation through nonlinear media, viz, plasma and ferromagnets, using reductive perturbation method. The thesis contains 6 chapters

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies on sporulation of four commercially important red (sea-weeds) algae ^(agarophytes) namely Gelidiella acerosa, Gracilaria corticata, G edulis and Hypnea musciformis growing in the vicinity of’ Mandapam coast were carried out from October 1981 to September 1983. During the two years of study; fruiting behavior in the natural population of these species was also investigated. Laboratory experiments were carried out with the four algae sea weeds to collect information on seasonal aspects of spore production and diurnal variation of spore shedding. Detailed studies were made under laboratory conditions to know the effects of some selected environmental factors such as desiccation, salinity, temperature, light intensity and photoperiod on spore output in Gelidiella acerosa, Gracilaria edulis and kypnea musciformis hydrological data were also collected from the inter-tial region around mandapam area. The result obtained on all the above aspects are presented in this thesis

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developments in laser technology over the past few years have made it possible to do experiments with focused intensities of IO"-102' Wcm'z. Short-pulse high-intensity lasers are able to accelerate protons and heavier ions to multi-MeV energies during their interaction with solid targets, gas jets and clusters. When such a laser radiation is focused at the intensity above 10” Wcm'2, local electric field strength will be almost equivalent to that within an atom. Hence, new nonlinear optical phenomena will be expected in the field of light matter interaction. Most of the research in the material interaction using high power lasers, especially related to plasma interaction, has been directed to the short pulse x-ray generation- Nanosecond laser interactions with solid targets also generate plasmas which emit radiation mainly in the optical region, the understanding of which is far from satisfactory. This thesis deals with a detailed study of some of the dynamical processes in plasmas generated by nanosecond and femtosecond lasers

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conjugated polymers in the form of thin films play an important role in the field of materials science due to their interesting properties. Polymer thin films find extensive applications in the fabrication of devices, such as light emitting devices, rechargeable batteries, super capacitors, and are used as intermetallic dielectrics and EMI shieldings. Polymer thin films prepared by plasma-polymerization are highly cross-linked, pinhole free, and their permittivity lie in the ultra low k-regime. Electronic and photonic applications of plasma-polymerized thin films attracted the attention of various researchers. Modification of polymer thin films by swift heavy ions is well established and ion irradiation of polymers can induce irreversible changes in their structural, electrical, and optical properties. Polyaniline and polyfurfural thin films prepared by RF plasmapolymerization were irradiated with 92MeV silicon ions for various fluences of 1×1011 ions cm−2, 1×1012 ions cm−2, and 1×1013 ions cm−2. FTIR have been recorded on the pristine and silicon ion irradiated polymer thin films for structural evaluation. Photoluminescence (PL) spectra were recorded for RF plasma-polymerized thin film samples before and after irradiation. In this paper the effect of swift heavy ions on the structural and photoluminescence spectra of plasma-polymerized thin films are investigated.