2 resultados para planets and satellites: terrestrial planets

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Arabian Sea is an area of complex air-sea interaction processes with seasonal reversing monsoons. The associated thermohaline variability in the upper layers appears to control the large scale monsoon flow which is not yet completely understood. The variability in the thermohaline fields is known to occur in temporal domain ranging from intra-diurnal to inter-annual time scales and on spatial domains of few tens of kilometers to few thousands of kilometers. In the Arabian Sea though the surface temperature was routinely measured by both conventional measurements and satellites, the corresponding information on the subsurface thermohaline field is very sparse due to the lack cw adequate measurements. In such cases the numerical models offer promise in providing information on the subsurface features given an initial thermohaline field and surface heat flux boundary conditions. This thesis is an outcome of investigations carried out on the various aspects of the thermohaline variability on different time scales. In addition to the description of the mean annual cycle. the one dimensional numerical models of Miller (1976) and Price et a1 (1986) are utilised to simulate the observed mixed layer characteristics at selected locations in the Arabian Sea on time scales ranging from intra-diurnal to synoptic scales under variable atmospheric forcing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric surface boundary layer parameters vary anomalously in response to the occurrence of annular solar eclipse on 15th January 2010 over Cochin. It was the longest annular solar eclipse occurred over South India with high intensity. As it occurred during the noon hours, it is considered to be much more significant because of its effects in all the regions of atmosphere including ionosphere. Since the insolation is the main driving factor responsible for the anomalous changes occurred in the surface layer due to annular solar eclipse, occurred on 15th January 2010, that played very important role in understanding dynamics of the atmosphere during the eclipse period because of its coincidence with the noon time. The Sonic anemometer is able to give data of zonal, meridional and vertical wind as well as the air temperature at a temporal resolution of 1 s. Different surface boundary layer parameters and turbulent fluxes were computed by the application of eddy correlation technique using the high resolution station data. The surface boundary layer parameters that are computed using the sonic anemometer data during the period are momentum flux, sensible heat flux, turbulent kinetic energy, frictional velocity (u*), variance of temperature, variances of u, v and w wind. In order to compare the results, a control run has been done using the data of previous day as well as next day. It is noted that over the specified time period of annular solar eclipse, all the above stated surface boundary layer parameters vary anomalously when compared with the control run. From the observations we could note that momentum flux was 0.1 Nm 2 instead of the mean value 0.2 Nm-2 when there was eclipse. Sensible heat flux anomalously decreases to 50 Nm 2 instead of the mean value 200 Nm 2 at the time of solar eclipse. The turbulent kinetic energy decreases to 0.2 m2s 2 from the mean value 1 m2s 2. The frictional velocity value decreases to 0.05 ms 1 instead of the mean value 0.2 ms 1. The present study aimed at understanding the dynamics of surface layer in response to the annular solar eclipse over a tropical coastal station, occurred during the noon hours. Key words: annular solar eclipse, surface boundary layer, sonic anemometer