12 resultados para planar optical waveguide
em Cochin University of Science
Resumo:
In this paper, we present an effective excitation of a reelangular dielectric resonator antennas (DRA) with a conductor-hacked coplanar waveguide (CB-CPW). The radiation and resonance characteristics are found to van,, depending on the orientation of the DR on doe coplanar feed line. The effect of finite and infinite ground planes of CB-CPIV on the radiation characteristics of the rectangular DRA is studied. The orientation and position of the DR are optimized for maximum gain and bandwidth. The optimized antenna ,geometry offers --10.46 dBi gain and 7.5% bandwidth with low cross-polar radiation characteristics
Resumo:
A broadband rectangular tnicrostrip antenna utilizing an electromagnetically coupled L-strip feed is presented. Experimental study shows a 2:1 VSWR bandwidth of a 10% and excellent cross-polarization performance with a radiation coverage almost as same as that of the rectangular microstrip antenna fed by conventional methods. The variation of bandwidth for different feed parameters is also studied. The proposed antenna is suitable for broadband communications
Loss characterization in rhodamine 6G doped polymer film waveguide by side illumination fluorescence
Resumo:
We report the position dependent tuning of fluorescence emission from rhodamine 6G doped polymethylmethacrylate film waveguide using a side illumination technique. The transmitted fluorescence as a function of the distance from the point of illumination is measured by translating the waveguide horizontally across a monochromatic light source. This technique has been utilized to characterize the optical loss in dye doped waveguides. We observe that the optical loss coefficients for shorter and longer distances of propagation through the dye doped waveguide are different. At longer distance of propagation a decrease in optical loss coefficient is observed
Resumo:
This Thesis deals with the fabrication and characterization of novel all-fiber components for access networks. All fiber components offer distinctive advantages due to low forward and backward losses, epoxy free optical path and high power handling. A novel fabrication method for monolithic 1x4 couplers, which are vital components in distributed passive optical networks, is realized. The fabrication method differs from conventional structures with a symmetric coupling profile and hence offers ultra wideband performance and easy process control. New structure for 1x4 couplers, by fusing five fibers is proposed to achieve high uniformity, which gives equivalent uniformity performance to 1x4 planar lightwave splitters, isolation in fused fiber WDM is improved with integration of long period gratings. Packaging techniques of fused couplers are analyzed for long term stability.
Resumo:
Organic nonlinear optical single crystals of Methyl para-Hydroxy Benzoate (MHB) have been grown using gel-solution technique. These crystals are cut along z-axis and are bombarded with Ag14+ ions of energy 100 MeV. The results show an increase in refractive index at the ion irradiated region. The dielectric constant of the irradiated crystal is increased more than 15 times compared to that of a nonirradiated crystal. The result of these changes and comparative study of second harmonic generation (SHG) efficiency before and after irradiation is discussed.
Resumo:
In this thesis, we explore the design, computation, and experimental analysis of photonic crystals, with a special emphasis on structures and devices that make a connection with practically realizable systems. First, we analyze the propenies of photonic-crystal: periodic dielectric structures that have a band gap for propagation. The band gap of periodically loaded air column on a dielectric substrate is computed using Eigen solvers in a plane wave basis. Then this idea is extended to planar filters and antennas at microwave regime. The main objectives covered in this thesis are:• Computation of Band Gap origin in Photonic crystal with the abet of Maxwell's equation and Bloch-Floquet's theorem • Extension of Band Gap to Planar structures at microwave regime • Predict the dielectric constant - synthesized dieletric cmstant of the substrates when loaded with Photonic Band Gap (PBG) structures in a microstrip transmission line • Identify the resonant characteristic of the PBG cell and extract the equivalent circuit based on PBG cell and substrate parameters for microstrip transmission line • Miniaturize PBG as Defected Ground Structures (DGS) and use the property to be implemented in planar filters with microstrip transmission line • Extended the band stop effect of PBG / DGS to coplanar waveguide and asymmetric coplanar waveguide. • Formulate design equations for the PBG / DGS filters • Use these PBG / DGS ground plane as ground plane of microstrip antennas • Analysis of filters and antennas using FDID method
Resumo:
The use of a split-ring resonator (SRR)-loaded waveguide for the design of a band-rejection filter with adjustable bandwidth is reported. The width of the stopband can be adjusted by suitably positioning the SRR array in the waveguide. The rejection band can be made very narrow by placing the array at the electric-field minimum. The stopband attenuation depends on the number of unit cells in the array.
Resumo:
This thesis Entitled Investigations on Broadband planar Dipole Antennas. An antenna is a device ordinarily used for both transmitting and receiving electromagnetic energy. It is an integral part of the radio communication system and accounts for a good deal of progress that has been made in this field during the last few decades.The effect of flaring the dipole arms is studied in Section 4.1. It is observed that the flaring modifies the impedance characteristics of the dipole. In particular, the change in the reactive part of the impedance with frequency is controlled considerably. This improves the 2:1 VSWR bandwidth of the antenna. The effect of various other design parameters on the impedance bandwidth of the antenna are also studied. The important conclusion drawn is that, there is considerable improvement in the impedance bandwidth of the dipole when ground arm dimensions are larger than the main arm dimensions. Theoretical analysis of various cavity backed antennas are given in Chapter 6. The experimental values agree well with the computation. Also the theory gives a clear inside view and explains the reasons for bandwidth enhancement due to flaring and end-loading of the dipole arms. The percentage bandwidth is determined by calculating the Q of the antenna. Since the approach is for the analysis of microstrip antenna on thick grounded substrate, this method cannot be used to predict the impedance bandwidth of the antennas without cavity backup. Also, the structures analysed are simplified versions of the optimised ones. Specially, the arms overlapping is neglected in the analysis. Also, the antennas with symmetrical arms can only be analysed with this theory.
Resumo:
With the recent progress and rapid increase in the field of communication, the designs of antennas for small mobile terminals with enhanced radiation characteristics are acquiring great importance. Compactness, efficiency, high data rate capacity etc. are the major criteria for the new generation antennas. The challenging task of the microwave scientists and engineers is to design a compact printed radiating structure having broadband behavior along with good efficiency and enhanced gain. Printed antenna technology has received popularity among antenna scientists after the introduction of planar transmission lines in mid-seventies. When we view the antenna through a transmission line concept, the mechanism behind any electromagnetic radiator is quite simple and interesting. Any electromagnetic system with a discontinuity is radiating electromagnetic energy. The size, shape and orientation of the discontinuities control the radiation characteristics of the system such as radiation pattern, gain, polarization etc. It can be either resonant or non-resonant. This thesis deals with antennas that are developed from a class of transmission lines known as coplanar strip-CPS, a planar analogy of parallel pair transmission line. The specialty of CPS is its symmetric structure compared to other transmission lines, which makes the antenna structures developed from CPS quite simple for design and fabrication. The structural modifications on either metallic strip of CPS results in different antennas. The first part of the thesis discusses a single band and dual band design derived from open ended slot lines which are very much suitable for 2.4 and 5.2 GHz WLAN applications. The second section of the study is vectored into the development of enhanced gain dipoles. A single band dipole and a wide band enhanced gain dipole suitable for 5.2/5.8 GHZ band and imaging applications are developed and discussed. Last part of the thesis discusses the development of directional UWBs. Three different types of ultra-compact UWBs are developed and almost all the frequency domain and time domain analysis of the structures are discussed.
Resumo:
A compact Co-Planar Waveguide (CPW) fed antenna operating at 2.4GHz with 300MHz 2:1 VSWR bandwidth is presented. Compared to a conventional quarter wavelength CPW fed monopole antenna, the aperture area reduction of the present antenna is 85%. The prototype antenna fabricated on a substrate of εr = 4.4 and thickness 1.6mm is only 22x10x1.6mm3. This much size reduction and impedance matching is achieved by adjusting the signal to ground plane separation and meandering the ground plane of a 50Ω CPW transmission line
Resumo:
A compact coplanar waveguide-fed (CPW) monopole antenna for ultra-wideband wireless communication is presented. The proposed antenna comprises of a CPW-fed beveled rectangular patch with a modified slotted ground. The overall size of the antenna is 30 mm 27 mm 1.6 mm. The lower edge of the band is attained by properly decoupling the resonant frequencies due to the extended ground plane and the beveled rectangular patch of the antenna. The upper edge of the radiating band is enhanced by beveling the ground plane corners near the feed point. Experimental results show that the designed antenna operates in the 2.7–12 GHz band, for S11 10 dB with a gain of 2.7–5 dBi. Both the frequency domain and time domain characteristics of the antenna are investigated using antenna transfer function. It is observed that the antenna exhibits identical radiation patterns and reasonable transient characteristics over the entire operating band
Resumo:
An electrically small, broadband-modified, truncated ground metamaterial EZ antenna is presented. This, a modified EZ antenna system, achieves a larger bandwidth of the order of 650 MHz by adjusting the metamaterial-inspired meandered ground element fed by a top loaded monopole. The design is devoid of the large ground planes and the external parasitic elements used in conventional designs for achieving proper impedance matching characteristics. The antenna requires a small foot print of kg/5 3 kg/10, where kg is the guided wavelength corresponding to the lowest frequency of operation, when printed on a substrate of dielectric constant 4.4 and thickness 1.6 mm. The antenna offers a 2:1 VSWR bandwidth from 750 MHz to 1.4 GHz, which covers CDMA, GSM, and ISM bands