4 resultados para phylum
em Cochin University of Science
Resumo:
The study of bryozoans, an important group of coelomates in the marine environment is an integral part of faunistic investigations. Bryozones are an ancient, aberrant phylum of microscopic but fascinating and often beautiful animals that build intricate colonies sometimes resembling minicolonies. In this study taxonomy, bionomics and biofouling of bryozoans from the coasts of India and the Antarctic waters. The marine biofouling is found to be hazardous. Bryozoans are microscopic , sessile,colonical coelomates that are permanently fastened in exoskeletal cases or gelatinous material of their own secretion.It is hoped that this work would help the future researchers to devote attention on microbenthos of the continental shelf of India when samples are made available through collections conducted by any ocean going vessel. In the present work an extensive study on the bryozoan foulers that occur at five selected sites of the cochin estury had to be examined and since the hydrographic parameters such as salinity, temperature, pH and dissolved oxygen in the estury,vary greatly from that in the open ocean, a frequent monitoring of these parameters was essential.
Resumo:
The studies were conducted in nine stations with varying ecological characteristics along Cochin backwaters and adjoining canals. Many workers opined that the distribution of rotifers is cosmopolitan. The significance of rotifers as first food for early larvae was indicated by Fujita. Aquaculture is a fast growing field in fisheries sector and it is gaining more importance as the fish landings and supply are getting irregular. A consistent supply of fish/shellfish can only be achieved through aquaculture. The success of any culture activity depends on the timely production of seeds of finfishes/shellfishes. The availability of wild seed is seasonal and erratic. So, a dependable source of seed of fishes and shellfishes is possible only through large scale production in hatchery. A successful seed production activity depends on the availability of a variety of suitable live feed organisms in sufficient quantities at the proper time for use in the larval stages. As the live feeds promote high growth rates, easy digestion, assimilation and the quality of not contaminating the culture water when compared to other artificial feeds, make the culture of live feed organisms the principal means of providing food for the larvae of finfishes and shellfishes. Rotifers are considered to be an excellent and indispensable food for larvae of many finfishes and crustaceans. It (1960) was the first to culture Brachionus plicatilis for feeding marine fish larvae, and now it is being extensively used as live feed in hatcheries all over the world. They are a group of microscopic organisms coming under the Phylum Rotifera which comprises of about 2000 species. Their slow swimming habits, ability to tolerate a wide range of salinities, parthenogenetic mode of reproduction and ability to get enriched easily, make rotifers an ideal live feed organism. The major factors such as temperature, salinity and food that influence the reproductive potential and thereby the population size of rotifer, Salinity is one of the most important aspect influencing the reproductive rate of rotifers. The feed type and feed concentration play a vital role in influencing the reproductive rate of rotifers. For culture of rotifers, the commonly used micro algae belong to Chlorella, Nannochloropsis, Isochrysis and Tetraselmis. While some studies have suggested that, algal diet has little effect on reproductive rates in 1979 while using the rotifer, Brachionus plicatilis as feed for the larvae of red sea bream, Pagrus major. It is generally accepted that rotifers play a pivotal role in the successful rearing of marine fish larvae.
Resumo:
BACKGROUND: A packed bed bioreactor (PBBR) activated with an indigenous nitrifying bacterial consortia was developed and commercialized for rapid establishment of nitrification in brackish water and marine hatchery systems in the tropics. The present study evaluated nitrification in PBBR integrated into a Penaeus monodon recirculating maturation system under different substrate concentrations and flow rates. RESULTS:Instantnitrificationwasobservedafter integration ofPBBRinto thematuration system.TANandNO2-Nconcentrations were always maintained below0.5 mg L−1 during operation. The TANandNO2-N removalwas significant (P < 0.001) in all the six reactor compartments of the PBBR having the substrates at initial concentrations of 2, 5 and 10 mg L−1. The average volumetric TAN removal rates increased with flow rates from 43.51 (250 L h−1) to 130.44 (2500 L h−1) gTAN m−3 day−1 (P < 0.05). FISH analysis of the biofilms after 70 days of operation gave positive results with probes NSO 190 ((β ammonia oxidizers), NsV 443 (Nitrosospira spp.) NEU (halophilic Nitrosomonas), Ntspa 712 (Phylum Nitrospira) indicating stability of the consortia. CONCLUSION: The PBBR integrated into the P. monodon maturation system exhibited significant nitrification upon operation for 70 days as well as at different substrate concentrations and flow rates. This system can easily be integrated into marine and brackish water aquaculture systems, to establish instantaneous nitrification
Resumo:
The addition of commercial nitrifying bacterial products has resulted in significant improvement of nitrification efficiency in recirculating aquaculture systems (RAS). We developed two nitrifying bacterial consortia (NBC) from marine and brackish water as start up cultures for immobilizing commercialized nitrifying bioreactors for RAS. In the present study, the community compositions of the NBC were analyzed by universal 16S rRNA gene and bacterial amoA gene sequencing and fluorescence in situ hybridization (FISH). This study demonstrated that both the consortia involved autotrophic nitrifiers, denitrifiers as well as heterotrophs. Abundant taxa of the brackish water heterotrophic bacterial isolates were Paenibacillus and Beijerinckia spp. whereas in the marine consortia they were Flavobacterium, Cytophaga and Gramella species. The bacterial amoA clones were clustered together with high similarity to Nitrosomonas sp. and uncultured beta Proteobacteria. FISH analysis detected ammonia oxidizers belonging to b subclass of proteobacteria and Nitrosospira sp. in both the consortia, and Nitrosococcus mobilis lineage only in the brackish water consortium and the halophilic Nitrosomonas sp. only in the marine consortium. However, nitrite oxidizers, Nitrobacter sp. and phylum Nitrospira were detected in both the consortia. The metabolites from nitrifiers might have been used by heterotrophs as carbon and energy sources making the consortia a stable biofilm.