5 resultados para phylogeny, Rotifera, Acanthocephala, Syndermata
em Cochin University of Science
Resumo:
Anti-lipopolysaccharide factors are small proteins that bind and neutralize lipopolysaccharide and exhibit potent antimicrobial activities. This study presents the molecular characterization and phylogenetic analysis of the first ALF isoform (Pp-ALF1; JQ745295) identified from the hemocytes of Portunus pelagicus. The full length cDNA of Pp-ALF1 consisted of 880 base pairs encoding 293 amino acids with an ORF of 123 amino acids and contains a putative signal peptide of 24 amino acids. Pp-ALF1 possessed a predicted molecular weight (MW) of 13.86 kDa and theoretical isoelectric point (pI) of 8.49. Two highly conserved cysteine residues and putative LPS binding domain were observed in Pp-ALF1. Peptide model of Pp-ALF1 consisted of two α-helices crowded against a four-strand β-sheet. Comparison of amino acid sequences and neighbor joining tree showed that Pp-ALF1 has a maximum similarity (46%) to ALF present in Portunus trituberculatus followed by 39% similarity to ALF of Eriocheir sinensis and 38% similarity to ALFs of Scylla paramamosain and Scylla serrata. Pp-ALF1 is found to be a new isoform of ALF family and its characteristic similarity with other known ALFs signifies its role in protection against invading pathogens.
Resumo:
Hepcidin is cysteine-rich short peptide of innate immune system of fishes, equipped to perform prevention and proliferation of invading pathogens like bacteria and viruses by limiting iron availability and activating intracellular cascades. Hepcidins are diverse in teleost fishes, due to the varied aquatic environments including exposure to pathogens, oxygenation and iron concentration. In the present study, we report a 87-amino acid (aa) preprohepcidin (Hepc-CB1) with a signal peptide of 24 aa, a prodomain of 39 aa and a bioactive mature peptide of 24 aa from the gill mRNA transcripts of the deep-sea fish spinyjaw greeneye, Chlorophthalmus bicornis. Molecular characterisation and phylogenetic analysis categorised the peptide to HAMP2-like group with a mature peptide of 2.53 kDa; a net positive charge (?3) and capacity to form b-hairpin-like structure configured by 8 conserved cysteines. The present work provides new insight into the mass gene duplication events and adaptive evolution of hepcidin isoforms with respect to environmental influences and positive Darwinian selection. This work reports a novel hepcidin isoform under the group HAMP2 from a nonacanthopterygian deep-sea fish, C. bicornis
Resumo:
The studies were conducted in nine stations with varying ecological characteristics along Cochin backwaters and adjoining canals. Many workers opined that the distribution of rotifers is cosmopolitan. The significance of rotifers as first food for early larvae was indicated by Fujita. Aquaculture is a fast growing field in fisheries sector and it is gaining more importance as the fish landings and supply are getting irregular. A consistent supply of fish/shellfish can only be achieved through aquaculture. The success of any culture activity depends on the timely production of seeds of finfishes/shellfishes. The availability of wild seed is seasonal and erratic. So, a dependable source of seed of fishes and shellfishes is possible only through large scale production in hatchery. A successful seed production activity depends on the availability of a variety of suitable live feed organisms in sufficient quantities at the proper time for use in the larval stages. As the live feeds promote high growth rates, easy digestion, assimilation and the quality of not contaminating the culture water when compared to other artificial feeds, make the culture of live feed organisms the principal means of providing food for the larvae of finfishes and shellfishes. Rotifers are considered to be an excellent and indispensable food for larvae of many finfishes and crustaceans. It (1960) was the first to culture Brachionus plicatilis for feeding marine fish larvae, and now it is being extensively used as live feed in hatcheries all over the world. They are a group of microscopic organisms coming under the Phylum Rotifera which comprises of about 2000 species. Their slow swimming habits, ability to tolerate a wide range of salinities, parthenogenetic mode of reproduction and ability to get enriched easily, make rotifers an ideal live feed organism. The major factors such as temperature, salinity and food that influence the reproductive potential and thereby the population size of rotifer, Salinity is one of the most important aspect influencing the reproductive rate of rotifers. The feed type and feed concentration play a vital role in influencing the reproductive rate of rotifers. For culture of rotifers, the commonly used micro algae belong to Chlorella, Nannochloropsis, Isochrysis and Tetraselmis. While some studies have suggested that, algal diet has little effect on reproductive rates in 1979 while using the rotifer, Brachionus plicatilis as feed for the larvae of red sea bream, Pagrus major. It is generally accepted that rotifers play a pivotal role in the successful rearing of marine fish larvae.
Resumo:
The management of exploited species requires the identification of demographically isolated populations that can be considered as independent management units (MUs), failuring in which can lead to over -fishing and depletion of less productive stocks. By characterizing the distribution of genetic variation, population sub structuring can be detected and the degree of connectivity among populations can be estimated. The genetic variation can be observed using identified molecular markers of both nuclear and mitochondrial origin. Hence, the present work was undertaken to study the genetic diversity and population/stock structure in P. homarus homarus and T. unimaculatus from different landing centres along the Indian coast using nuclear (RAPD) and mitochondrial DNA marker tools which will help towards developing management strategies for management and conservation of these declining resources.To make consistent conservation and fisheries management decisions, accurate species identifications are needed. It is also suggested that it is not always desirable to rely on a single sequence for taxonomic identification. Thus, the feasibility of using partial sequences of additional mitochondrial genes like 16SrRNA, 12SrRNA and nuclear 18SrRNA has also been explored in our study. Phylogenies provide a sound foundation for establishing taxonomy. The present work also attempts to reconstruct the phylogeny of eleven species of commercially important lobsters from the Indian EEZ using molecular markers
Resumo:
Soil community genomics or metagenomics is employed in this study to analyze the evolutionary related - ness of mangrove microbial community. The metagenomic DNA was isolated from mangrove sediment and 16SrDNA was amplified using universal primers. The amplicons were ligated into pTZ57R/T cloning vector and transformed onto E. coli JM109 host cells. The recombinant plasmids were isolated from positive clones and the insert was confirmed by its reamplification. The amplicons were subjected to Amplified Ribosomal DNA Restriction Analysis (ARDRA) using three different tetra cutter restriction enzymes namely Sau3A1, Hha1 and HpaII. The 16SrDNA insert were sequenced and their identity was determined. The sequences were submitted to NCBI database and accession numbers obtained. The phylo - genetic tree was constructed based on Neighbor-Joining technique. Clones belonged to two major phyla of the bacterial domain, namely Firmicutes and Proteobacteria, with members of Firmicutes predominating. The microbial diversity of the mangrove sediment was explored in this manner.