10 resultados para photoinduced
em Cochin University of Science
Resumo:
Lanthana modified sol-gel titania is prepared through particulate sol-gel route and the physico-chemical characterizations of the prepared systems were done using X-Ray diffration, EDX, BET surface area-pore volume measurements and TG-DTG analysis. Benzophenone was observed to be the sole product in the TiO2 photocatalyzed oxidation of benzhydrol in oxygen purged acetonitrile. The influence of various parameters, like irradiation time, amount of catalyst, concentration of the catalyst and other factors on the photocatalytic oxidation has been investigated. The proposed mechanism envisages the involvement of a superoxide radical anion.
Resumo:
Laser-induced photoelectric and photoemission optogalvanic effects in a Ne-Nd hollow cathode discharge have been studied using a continuous wave laser source. The potential barrier for photoinduced electron emission from the cathode decreases as the applied voltage is increased. Owing to secondary electron emission in the plasma, the photocurrent is greater than that without discharge. The multiplication of secondary electrons and the quantum efficiency are also investigated.
Resumo:
In this context,in search of new materials based on chalcogenide glasses,we have developed a novel technique for fabrication of chalcogenide nano composites which are presented in this theis.The techniques includes the dissolution of bulk chalcogenide glasses in amine solvent.This solution casting method allows to retain the attractive optical properties of chalcogenide glasses enabling new fabrication routes for realization of large area thick-thin films with less cost. Chalcogenide glass fiber geometry opens new possibilities for a large number of applications in optics,like remote temperature measurements ,CO2 laser power delivery, and optical sensing and single mode propagation of IR light.We have fabricated new optical polymer fibers doped with chalcogenide glasses which can be used for many optical applications.The present thesis also describes the structural,thermal and optical characterization of certain chalocogenide based materials prepared for different methods and its applications.
Resumo:
The overall focus of the thesis involves the synthesis and characterization of CdSe QDs overcoated with shell materials for various biological and chemical sensing applications. Second chapter deals with the synthesis and characterization of CdSe and CdSe/ZnS core shell QDs. The primary attention of this work is to develop a simple method based on photoinduced charge transfer to optimize the shell thickness. Synthesis of water soluble CdSe QDs, their cytotoxicity analysis and investigation of nonlinear optical properties form the subject of third chapter. Final chapter deals with development of QD based sensor systems for the selective detection of biologically and environmentally important analytes from aqueous media.
Resumo:
The thesis entitled ‘Studies on the Solvent Dependence in the Reaction of a Few (Anthracen-9-yl)methylamines and Sulfanes with Reactive Acetylenes’ is divided into six chapters. ln Chapter l a general survey of electron transfer reactions, Diels-Alder reactions and Michael-type additions is presented. A detailed discussion on the synthesis of several (anthracen-9-yl)methylamines is presented in Chapter 2. In Chapter 3, results of preliminary photophysical studies on a few (anthracen-9yl) methylamines are compiled. A detailed discussion on extensive examination of dependence in the reaction of (anthracen-9-yl)methylamines with reactive acetylenes is presented Chapter 4. Details on the synthesis and reaction of a few (anthracen-9-yl)methylsulfanes with DMAD are described in Chapter 5.
Resumo:
This thesis Entitled phenylethynylarene based Donor-Acceptor systems:Desigh,Synthesis and Photophysical studies. A strategy for the design of donor-acceptor dyads, wherein decay of the charge separated (CS) state to low lying local triplet levels could possibly be prevented, is proposed. In order to examine this strategy, a linked donor-acceptor dyad BPEPPT with bis(phenylethYlly/)pyrene (BPEP) as the light absorber and acceptor and phenothiazine (PT) as donor was designed and photoinduced electron transfer in the dyad investigated. Absorption spectra of the dyad can be obtained by adding contributions due 10 the BPEP and PT moieties indicating that the constituents do not interact in the ground stale. Fluorescence of the BPEP moiety was efficiently quenched by the PT donor and this was attributed to electron lransfer from PT to BPEP. Picosecond transient absorption studies suggested formation of a charge separated state directly from the singlet excited state of BPEP. Nanosecond flash photolysis experiments gave long-ived transient absorptions assignable to PT radical cation and BPEP radical anion. These assignments were confirmed by oxygen quenching studies and secondary electron transfer experiments. Based on the available data, energy level diagram for BPEP-PT was constructed. The long lifetime of the charge separated state was attributed to the inverted region effects. The CS state did not undergo decay to low lying BPEP triplet indicating the success of our strategy
Resumo:
the thesis entitled “Ground and Excited State Electron Transfer Reaction Between a few Anthracene Appended Tertiary Amines and Suitable Electron Acceptors” portrays our attempts to explore the solvent, concentration and temperature effect of the reaction between a few (anthracen-9- yl)methanamines with electron acceptors like DMAD, DBA and DBE. We have also studied the effect of solvent and percentage fluorescence quenching in the photoinduced electron transfer reactions of these ‘donor-spacer-acceptor’ systems. Finally we look in to the intramolecular electron transfer reactions of a few tertiary amine appended dibenzobarrelenes and bisdibenzobarrelenes