14 resultados para phenolic resin

em Cochin University of Science


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of the investigation is to develop new high performance adhesive systems based on neoprene-phenolic blends. Initially the effect of addition of all possible ingredients like fillers, adhesion promoters, curing agents and their optimum compositions to neoprene solution is investigated. The phenolic resin used is a copolymer of phenol-cardanolformaldehyde prepared in the laboratory. The optimum ratio between phenol and cardanol that gives the maximum bond strength in metal-metal, rubber-rubber and rubber-metal specimens has been identified. Further the ratio between total phenols and formaldehyde is also optimised. The above adhesive system is further modified by the addition of epoxidized phenolic novolacs. For this purpose, phenolic novolac resins are prepared in different stoichiometric ratios and are subsequently epoxidized. The effectiveness of the adhesive for bonding different metal and rubber substrates is another part of the study. To study the ageing behaviour, different bonded specimens are exposed to high temperature, hot water and salt water and adhesive properties have been evaluated. The synthesized resins have been characterized by FTIR , HNMR spectroscopy. The molecular weights of the resins have been obtained by GPC. Thermogravimetric analysis and differential scanning calorimetry are used to study the thermal properties. The fractured surface analysis is studied by scanning electron microscopy. The study has brought to light the influence of phenol/ formaldehyde stoichiometric ratio, addition of cardanol (a renewable resource), adhesion promoters and suitability of the adhesive for different substrates and the age resistance of adhesive joints among other things.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modifications of DGEBA Using Epoxidised Resins

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Unsaturated polyester resins (UPRs) are used widely in the fiber-reinforced plastics (FRPs) industry. These resins have the disadvantages of brittleness and poor resistance to crack propagation. In this study, hybrid polymer networks (HPNs) based on UPR and epoxidized phenolic novolacs (EPNs) were prepared by reactive blending. A HPN is composed of a backbone polymer containing two types of reactive groups that can take part in crosslinking reactions via different mechanisms. EPNs were prepared by glycidylation of novolacs using epichlorohydrin. The novolacs had varying phenol: formaldehyde ratios. Blends of unsaturated polyester with EPN were then prepared. The physical properties of the cured blends were compared with those of the control resin. EPN shows good miscibility and compatibility with the resin and improves the toughness and impact resistance substantially. Considerable enhancement of tensile strength is also noticed at about 5% by weight of epoxidized novolac resin. TGA, DMA, and DSC were used to study the thermal properties of the toughened resin and the fracture behavior was studied using SEM. The blends are also found to have better thermal stability. Blending with EPN can be a useful and cost-effective technique for modification of UPR

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phenolic resins suffer from the presence of microvoids on curing. This often leads to less than satisfactory properties in the cured resin. This disadvantage has limited the use of phenolic resins to some extent. This study is an attempt to improve the mechanical properties of the phenolic resol resins by chemical modification aimed at reducing the microvoid population. With this end in view various themoset resins synthesised under predetennined conditions have been employed for modifying phenolic resols. Such resins include unsaturated polyester, epoxy and epoxy novolac prepolymers. The results establish the effectiveness of these resins for improving the mechanical properties of phenolics. Experimental and analytical techniques used include FTIR, DMA, TGA, SEM and mechanical property evaluation. While most of the modifier resins employed give positive results the effect of adding UP is found to be surprising as well as impressive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis aims to develop new toughened systems for epoxy resin via physical and chemical modifications. Initially the synthesis of DGEBA was carried out and the properties compared with that of the commercial sample. Subsequently the modifier resins to be employed were synthesized. The synthesized resin were characterized by spectroscopic method (FTIR and H NMR), epoxide equivalent and gel permeation chromatography. Chemical modification involves the incorporation of thermoset resins such a phenolics, epoxy novolacs, cardanol epoxides and unsaturated polyester into the epoxy resin by reactive belnding. The mechanical and thermal properties of the blends were studied. In the physical modification route, elastomers, maleated elastomers and functional elastomers were dispersed as micro-sized rubber phase into the continuous epoxy phase by a solution blending technique as against the conventional mechanical blending technique. The effect of matrix toughening on the properties of glass reinforced composites and the effect of fillers on the properties of commercial epoxy resin were also investigated. The blends were characterized by thermo gravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, scanning electron microscopy and mechanical property measurements. Among the thermoset blends, substantial toughening was observed in the case of epoxy phenolic novolacs especially epoxy para cresol novolac (ECN). In the case of elastomer blending , the toughest blends were obtained in the case of maleic anhydride grafted NBR. Among functional elastomers the best results were obtained with CTBN. Studies on filled and glass reinforced composites employing modified epoxy as matrix revealed an overall improvement in mechanical properties

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: Phenol was chemically attached to low molecular weight chlorinated polyisobutylene and stearic acid respectively. These phenolic antioxidants were characterised by IR, 1H NMR and TGA. The efficiency and permanence of these bound antioxidants were compared with conventional antioxidants in natural rubber vulcanisates. The vulcanisates showed comparable ageing resistance in comparison to vulcanisates containing conventional antioxidants. The presence of liquid polymer bound phenol reduce the amount of plasticiser required for compounding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rheological characteristics of short Nylon-6 fiber-reinforced Styrene Butadiene rubber (SBR) in the presence of epoxy resin-based bonding agent were studied with respect to the effect of shear rate, fiber concentration , and temperature on shear viscosity and die swell using a capillary rheonzeter. All the composites containing bonding agent showed a pseudoplastic nature, which decreased with increasing temperature. Shear viscosity was increased in the presence of fibers. The temperature sensitivity of the SBR matrices was reduced on introduction of fibers. The temperature sensitivity of the melts was found to be lower at higher shear rates. Die swell was reduced in the presence of fibers. Relative viscosity of the composites increased with shear rate. In the presence of epoxy resin bonding agent the temperature sensitivity of the mixes increased. Die swell was larger in the presence of bonding agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis describes the development and evaluation of epoxy resin as interfacial bonding agent for short Nylon-6 fiber elastomer composites. Epoxy resin is well known for its adhesive property. The potential use of it as interfacial bonding agent in short fiber composite is not explored yet. Three rubbers viz., acrylonitrile butadiene rubber (NBR), Neoprene rubber (CR) and styrene butadiene rubber (SBR) were selected and different fiber loading were tried. The resin concentration was optimized for each fiber loading with respect to cure characteristics and mechanical properties. Rheological characteristics and thermal degradation of the composites containing different fiber loading and different resin concentrations were studied in detail to find the effect of epoxy resin bonding system. The mechanical properties were studied in detail. The short Nylon -6 fiber improved most of the mechanical properties of all the three rubbers. Tensile strength showed a dip at 10 phr fiber loading in the case of CR while it was continuously increased with fiber loading in the case of NBR and SBR. All the composites showed anisotropy in mechanical properties. The epoxy resin is an effective bonding agent for short Nylon -6 fiber reinforced NBR and CR composites. Epoxy resin improved tensile strength, abrasion resistance and modulus of these composites. SEM studies confirmed the improved bonding of fiber and matrix in the presence of epoxy bonding agent. Epoxy resin was not effective as bonding agent in the case of short Nylon fiber- SBR composite. From the rheological studies of the composites with and without bonding agent it was observed that all the composite exhibited pseudoplasticity, which decreased with temperature. At higher shear rates all the mixes showed plug flow. SEM pictures showed that maximum orientation of fibers occured at a shear rate, just before the onset of plug flow. The presence of fiber reduced the temperature sensitivity of the flow at a given shear rate. Die swell was reduced in the presence of fiber. Shear viscosity of the composite was increased in the presence of resin. Die swell was increased in the presence of epoxy resin for composites at all shear rates. The thermal degradation of NBR and SBR composites with and without bonding agent followed single step degradation pattern. Thermal stability of the composites was improved in the presence of bonding agent. The degradation of virgin elastomer and the composites followed first order kinetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dept.of Marine Biology,Microbiology & Biochemistry,Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents the findings of a study on incorporating vanous thermoset resins into natural rubber for property improvement. Natural rubber is an important elastomer with the unique attribute of being a renewable agricultural product. The study was undertaken to investigate the extent to which the drawbacks of natural rubber, especially its poor thermal and oil resistance propel1ies could be nullified by blending with common thermoset resins. A thorough and comparative understanding of the perfonnance of different resins from this viewpoint will be beneficial for both natural IUbber processors and consumers. In this study the thennoset resins used were epoxy resin, phenolics, epoxidised phenolics and unsaturated polyester resin.The resins were incorporated into NR during compounding and their effects on the properties of NR were studied after vulcanization. Properties were studied for both gum and filled N R compounds. The important properties studied are cure characteristics, mechanical properties, ageing propel1ies, thermal propel1ies, crosslink density and extractability. Characterization studies were also conducted using FTIR, TGA and DSC.Improvement in mechanical properties was noticed in many cases. The results show that most resins lead to a reduction in the cure time of NR. The perfonnance of epoxy resin is most noticeable in this respect. Mechanical properties of the modified IUbber show maximum improvement in the case of epoxidised novolacs. Most resins are seen to improve the thermal and oil resistance propel1ies of NR. Epoxy novolacs show maximum effect in this respect also. However the presence of tillers is found to moderate the positive effects of the thermoset resins considerably.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to determine the ability of specifically adapted bacteria to degrade phenol and to quantify the rate of biodegradation at. Different concentrations by mixed as well as individual isolates. Regular quantitative analysis of phenolics and aerobic phenololytic heterotrophs from five different ecosystems were done during 1990-1991, and the ability of microorganisms isolated from those areas, to utilize phenol, o-cresol and orcinol was also studied. In addition, data on environmental parameters like temperature, dissolved oxygen, salinity, pH, organic carbon and nutrients were also collected during the period of study The present study is one of its first kind in natural aquatic environment and has aimed to bring out some idea about the potential phenol biodegrades in such environments where the phenol concentration is beyond permitted level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid polymer networks (HPNs) based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The epoxy resins used were epoxidised phenolic novolac (EPN), epoxidised cresol novolac (ECN) and diglycidyl ether of bisphenol A (DGEBA). Epoxy novolacs were prepared by glycidylation of the novolacs using epichlorohydrin. The physical, mechanical, and thermal properties of the cured blends were compared with those of the control resin. Epoxy resins show good miscibility and compatibility with the UPR resin on blending and the co-cured resin showed substantial improvement in the toughness and impact resistance. Considerable enhancement of tensile strength and toughness are noticed at very low loading of EPN. Thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and diVerential scanning calorimetry (DSC) were employed to study the thermal properties of the toughened resin. The EPN/ UPR blends showed substantial improvement in thermal stability as evident from TGA and damping data. The fracture behaviour was corroborated by scanning electron microscopy (SEM). The performance of EPN is found to be superior to other epoxy resins

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unsaturated polyester resins (UPRs) are extensively used by the fiber-reinforced plastic (FRPs) industry. These resins have the disadvantages of brittleness and poor resistance to crack propagation. In this study, UPRs were chemically modified by reactive blending with polyurethane prepolymers having terminal isocyanate groups. Hybrid networks were formed by copolymerisation of unsaturated polyesters with styrene and simultaneous reaction between terminal hydroxyl groups of unsaturated polyester and isocyanate groups of polyurethane prepolymer. The prepolymers were based on toluene diisocyanate (TDI) and each of hydroxy-terminated natural rubber (HTNR), hydroxy- terminated polybutadiene (HTPB), polyethylene glycol (PEG), and castor oil. Properties like tensile strength, toughness, impact resistance, and elongation-at-break of the modified UPRs show considerable improvement by this modification. The thermal stability of the copolymer is also marginally better