20 resultados para pesticide contaminants
em Cochin University of Science
Resumo:
School of Environmental Studies, Cochin University of Science and Technology
Resumo:
Man uses a variety of synthetic material for his comfortable materialistic life. Thus human interactions may become harmful for various terrestrial and aquatic lives. This is by contaminating their habitat and by becoming a threat to organisms itself. Thus the application and dispersal of several organic pollutants can lead to the development of several mutated forms of the species when exposed to sublethal concentrations of the pollutants. Otherwise, a decrease in number or extinction of these exposed species from earth's face may happen. Pesticides, we use for the benefit of crop yield, but its persistence may become havoc to non-target organism. Pesticides reaching a reservoir can subsequently enter the higher trophic levels. Organophosphorus compounds have replaced all other pesticides, due to its acute toxicity and non-persistent nature.Hence the present study has concentrated on the toxicity of the largest market-selling and multipurpose pesticide, chlorpyrifos on the commonly edible aquatic organism, fish. The euryhaline cichlid Oreochromis mossambicus was selected as animal model. The study has concentrated on investigating biochemical parameters like tissue-specific enzymes, antioxidant and lipid-peroxidation parameters, haematological and histological observations and pesticide residue analysis.Major findings of this work have indicated the possibility of aquatic toxicity to the fish on exposure to the insecticide chlorpyrifos. The insecticide was found as effective to induce structural alteration, depletion in protein content, decrease in different metabolic enzyme levels and to progress lipid peroxidation on a prolonged exposure of 21 days. The ion-transport mechanism was found to be adversely affected. Electrophoretic analysis revealed the disappearance of several protein bands after 21days of exposure to chlorpyrifos. Residue, analysis by gas chromatography explored the levels of chlorpyrifos retaining on the edible tissue portions during exposure period of 21days and also on a recovery period of 10 days.
Resumo:
School of Environmental Studies, Cochin University of Science and Technology
Resumo:
Methylparathion (MP) is an organophosphorus insecticide used world wide in agriculture due to its high activity against a broad spectrum of insect pests. The aim of the study is to understand the effect of methylparathion on the lipid peroxidation, detoxifying and antioxidant enzymes namely catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione Stransferase (GST), total reduced glutathione (GSH), lipid peroxidation (LPO), acetylcholinesterase (AChE) and disease diagnostic marker enzymes in liver, sarcoplasmic (SP) and myofirbirllar (MF) proteins in muscles, lipids and histopathlogical changes in various organs of Labeo rohita of size 75 i 6g at lethal and sublethal level of exposure. The probit analysis showed that the lethal concentration (LC 50%) for 24, 48, 72 and 96h were 15.5mg/L, 12.3mg/L, 11.4mg/L and 10.2mg/L respectively which is much higher compared to the LC50 for juvenile fish. The LPO level and GST activity increased five folds and two folds respectively on exposure to methylparathion at 10.2 mg/L and the level of the enzymes increased, on sub lethal exposure beyond 0.25mg/L. AChE activity was inhibited by 74% at a concentration of 1.8mg/L and 90% at 5.4mg/L. The disease diagnostic marker enzymes AST, ALT, ALP and LDH increased by about 2, 3 ,3 and 2 folds respectively at pesticide concentration of 10.2mg/L when compared to control. On sub lethal exposure, however the enzymes did not show any significant changes up to 0.5mg/L. At a concentration of 10.2 mg/L, there was a three fold increase in myofibrillar proteins while the increase in sarcoplasmic protein was above 1.5 fold. On sub lethal exposure, significant alteration was noticed up to 30 days up to 1mg/L of methylparathion concentration. Further exposure up to 45 days increased sarcoplasmic proteins (upto 0.5mg/L). ln the case of myofibrillar proteins, noticeable changes were observed at 1mg/L concentration right from 15th day. The cholesterol content in brain tissues increased by about 27% at methylparathion concentration of 5.4 mglL. However at 0.25mg/L sub lethal concentration, no significant alteration was observed in enzyme activity, muscle proteins, lipids and histopathology of the tissues. The results suggest that methylparathion has the potential to induce oxidative stress in fish, and that liver, muscle and brains are more sensitive organs of Labeo rohita, with poor antioxidant potentials at higher concentrations of the pesticide. The various parameters studied in this investigation can also be used as biomarkers of methylparathion exposure.
Resumo:
The thesis is Studies on the Effect or the Obganophosphorus Pesticide Ekalux(R) EC 25 on the Bacterial Flora or Villorita Cyprinoides Var.Cochinensis (Hanley). For the present investigation, the black clam Villorita gyprinoides var. cochinensis (Hanley), a most common clam genus present in this estuarine system has been selected as test organaism and Ekalux (R) EC 25 as toxicant. The aspects dealt with are 1. Total heterotrophic bacterial population, 2. Generic composition, 3. Hydrolytic enzyme producing bacteria, 4. Antibiotic resistance, 5. Heavy metal resistance, 6. The effect of pesticide concentration on the growth of the bacteria and 7. Effect of temperature, pH and sodium chloride on the growth and phosphate release of selected isolates.The samples for the experiment were collected from the Vembanad Lake, near Kumbalam Island during the period of September 1985 to May '86. The THB of the estuarine water and clams contained 6.5 x I04/ml and 2.975 x l06/g respectively, immediately after collection. Untreated water and clam samples showed enormous increase in THB from 0 hr population. The treated samples (water and clams) contained higher THB than 0 hr. In general, THB was observed to increase tremendously in the samples treated with pesticide when compared to their native flora. With reference to various concentrations of pesticides, THB recorded an increase with increase of concentration in water and clam samples.
Resumo:
This paper presents the first detailed investigation on the residual levels of organochlorine insecticide (OCI) concentrations in the Cochin estuarine sediment. It aims in elucidate their distribution and ecological impact on the aquatic system. Concentrations of persistent organochlorine compound (OC) were determined for 17 surface sediment samples which were collected from specific sites of Cochin Estuarine System (CES) over a period of November 2009 and November 2011. The contaminant levels in the CES were compared with other worldwide ecosystems. The sites bearing high concentration of organochlorine compounds are well associated with the complexities and low energy environment. Evaluation of ecotoxicological factors suggests that adverse biological effects are expected in certain areas of CES
Resumo:
The present study has been initiated to unravel the distribution of trace metals and its geochemical behavior in the Indian EEZ of the Arabian Sea and Bay of Bengal. Trace metal accumulation in aquatic consumers is of interest to ecologists and environmentalists so as to understand the fate and effect of contaminants in the food web dynamics and the biogeochemical cycling of trace metals. It is well established that oceanic distribution of macronutrients such as nitrate, phosphate and silicate provide critical to biological growth and related geochemical processes. In this study it can be inferred, that there is a need for a better understanding of background informations on trace metal concentrations with respect to space and time and their fluctuations in the Arabian Sea and Bay of Bengal zooplankton. Without a sound knowledge on spatio-temporal fluctuations, it will be impossible to differentiate anthropogenic metal inputs from natural background concentrations with a routine biomonitoring programme. Fe, Cu, Zn, Cd & Pb showed a slight enrichment in zooplankton from the Arabian Sea during spring intermonsoon compared to intermonsoon fall. The relative enrichment of Fe, Cu & Zn in zooplankton from the Arabian Sea during intermonsoon spring than intermonsoon fall was due to favourable bioaccumulation factors of these elements during this season. Nevertheless this study can be looked upon as a starting point for further investigations on these biogeochemically important processes, which are vital in addressing the dynamics of productivity of waters.
Resumo:
The current water treatment technology is oriented towards the removal of contaminants, mostly organic compounds, by activated carbon. Activated carbons are classified as Granular Activated Carbons (GAC) and Powdered Activated Carbons (PAC) on the basis of the particle size of the carbon granules. Powdered carbons are generally less expensive than granular carbon, operating costs with powdered carbon could be lower. Though powdered activated carbon has many advantages over granular carbon, its application in large-scale separation process is limited by difficulty in recovery and regeneration. Deposition of magnetic iron oxide on carbon particles provides a convenient way of recovering the spent carbon from process water. The study deals with the preparation and physico-chemical characterization of magnetic iron oxide loaded activated carbons. The evaluation of absorption properties of magnetic iron oxide loaded activated carbon composites. The target molecules studied were phenol, p-nitro phenol and methylene blue. The feasibility of magnetic separation of iron oxide loaded activated carbons were studied and described in this thesis.
Resumo:
The present work is a base line attempt to investigate and assess the toxicities of three surfactants viz. anionic sodium dodecyl sulfate (SDS), non ionic Triton X-1OO (TX-IOO) and cationic cetyl trimethyl ammonium bromide (CTAB). These compounds represent simple members of the often neglected group of aquatic pollutants i.e. the anionic alkyl sulfates, non ionics and the cationics. These compounds are widely used In plastic industry, pesticide/herbicide formulations, detergents, oil spill dispersants, molluscicides etc. The test organisms selected for the present study are the cyanobacterium Synechocystis salina Wislouch representing a primary producer in the marine environment and a fresh water adapted euryhaline teleost Oreochromis mossambicus (peters) at the consumer level of the ecological pyramid. The fish species, though not indigenous to our country, is now found ubiquitously in fresh water systems and estuaries. Also it is highly resistant to pollutants and has been suggested as an indicator of pollution in tropical region .
Resumo:
The design and development of a cost-effective, simple, sensitive and portable LED based fiber optic evanescent wave sensor for simultaneously detecting trace amounts of chromium and nitrite in water are presented. In order to obtain the desired performance, the middle portions of two multimode plastic clad silica fibers are unclad and are used as the sensing elements in the two arms of the sensor. Each of the sensor arms is sourced by separate super bright green LEDs, which are modulated in a time-sharing manner and a single photo detector is employed for detecting these light signals. The performance and characteristics of this system clearly establish the usefulness of the technique for detecting very low concentrations of the dissolved contaminants.
Resumo:
The present investigation revealed three types of circulating haemocytes in the haemolymph of F. indicus: hyalinocytes, small-granule haemocytes, and large-granule haemocytes. Intermediate stages indicate the maturing process of a single cell. The presence of enzymes such as peroxidase, phenoloxidase and acid phosphatase in the haemocytes, and the substantial production of oxygen radicals during phagocytosis show that the haemocytes are capable of mounting a fme cellular defense mechanism. The enzyme activities of the serum and the presence of agglutinins in the serum, which may act as opsonins, agglutinate foreign particles and augment phagocytosis, confirm the presence of a superior humoral immune system in F. indicus.Bacterial infection caused considerable variations in the cellular and humoral factors, such as the number of circulating cells and haemagglutinating activity, especially in the initial hours of infection. The total haemocyte count, haemagglutination titer and phenoloxidase enzyme showed significant reductions on bacterial presence and could be used as indicators of bacterial infection.The number of circulating cells showed drastic fluctuation on exposure to pollutants. Nuvan at low concentrations was able to produce changes in the haemolymph factors and in the tissue organization, which implies that the animal is under stress and is easily prone to infections. Exposure to nuvan resulted in significant variation in all of the cellular and humoral factors, especially, the total haemocyte count, percentage of small granule haemocytes, phagocytic activity and the haemagglutinating activity, which might be good indicators of pesticide pollution. Heavy metal exposure caused significant increase in total haemocyte count and reduction in phenoloxidase enzyme activity Even changes in the physio-chemical parameters, such as salinity caused fluctuations in the defense factors, indicating stress in this euryhaline species. The dietary incorporation of a commercial immunostimulant containing P-l,3 glucan resulted in stimulation of some of the humoral defense factors of F indicus, but was time dependent. The modulations, on exposure to various external factors, in the cellular and humoral factors, especially, total haemocyte count, phagocytic activity, haemagglutinating activity and the phenoloxidase and acid phosphatase enzymes suggest that these parameters could be used as indicators of the health status of F indicus, which assist in better monitoring and effective health management of this important cultured species.
Resumo:
In India industrial pollution has become a subject of increasing concern.Incidents of industrial pollution have been reported from many parts of the country. Cochin, the collection site of the present study, being the industrial capital of Kerela is also a harbour, is vulnerable to pollution by trace metal contaminants. In the recent times, pollutants of greatest concern in the aquatic environment are those which are persistent such as toxic heavy metals and the chlorinated hydrocarbons which include insecticides and pesticides.The animals collected from the clam bed situated on the northern side af Cochin bermouth are subject to wide fluctuations in salinity both seasonal and tidal. also; salinity is considered as an important parameter influencing the.-physiological functioning of an organism. Hence, the salinity tolerance of the animal is worked out. Considering the potential vulnerability of Cochin backwaters to heavy metal pollution, the impact of heavy metal copper (II) on the bivalve Sunetta sripta was conceived. Static bioassays were conducted for the determination of the sublethal concentrations of the metal as a preliminary step towards the toxicity studies. Oxygen consumption and filtration rate which are considered as reliable sublethal toxicity indices were employed for investigating the toxic effects of the metal. Bioaccumulation, a physiological phenomenon which can be of importance from the public health point of view, and also in the assessment of environmental quality is also dealt with.
Resumo:
Poisoning by pesticides from agricultural fields is a serious water pollution problem and its environmental long-term effect may result in the incidence of poisoning of fish and other aquatic life forms (jyothi and Narayan, 1999). Fishes like Heteropneustesfbssilis and C/arius batrac/nus are especially prone to serious pesticide pollution as their habitat is mostly the agriculture area. Though only few studies are conducted in this area, it can be assessed from the local information that, population of such fish is on the verge of vulnerability due to extensive use of pesticides. The knowledge of sublethal effects of xenobiotic compounds on hematological parameters, enzyme activities and metabolite concentrations is very important to delineate the fish health status and provide a future understanding of ecological impacts. These pesticides act by causing inhibition of cholinesterase enzymes (ChE) by formation of enzyme inhibitor complex (O'Brien, 1976) and damaging the nervous system. These effects may result in metabolic disorders. Associated to cholinesterase activities, a study of other enzymes such as phosphatases and aminotransferases close to intermediary metabolite determination provides a wider view of metabolism. Interest in toxicological aspects has grown in recent years and research is now increasingly focused on mechanistic aspects of oxidative damage and cellular responses in biological system. The term ‘biomarker’ is generally used in a broad sense to include almost any measurement reflecting an interaction between a biological system and a potential hazard, which may be chemical, physical or biological (WHO, 1993). As biomarker stands for immediate responses, they are used as early warning signals of biological effects caused by environmental pollutants. The present work attempts to assess the toxicity of organophosphorus insecticide monocrotophos on the experimental organism selected for this study namely stinging catfish (Heteropneustesfossi/is) (Bloch), and to probe into the stress responses of the organism
Resumo:
Semiconductor photocatalysis has received much attention during last three decades as a promising solution for both energy generation and environmental problems. Heterogeneous photocatalytic oxidation allows the degradation of organic compounds into carbon dioxide and water in the presence of a semiconductor catalyst and UV light source. The •OH radicals formed during the photocatalytic processes are powerful oxidizing agents and can mineralise a number of organic contaminants. Titanium dioxide (TiO2), due to its chemical stability, non-toxicity and low cost represents one of the most efficient photocatalyst. However, only the ultraviolet fraction of the solar radiation is active in the photoexcitation processes using pure TiO2 and although, TiO2 can treat a wide range of organic pollutants the effectiveness of the process for pollution abatement is still low. A more effective and efficient catalyst therefore must be formulated. Doping of TiO2 was considered with the aim of improving photocatalytic properties. In this study TiO2 catalyst was prepared using the sol-gel method. Metal and nonmetal doped TiO2 catalysts were prepared. The photoactivity of the catalyst was evaluated by the photodegradation of different dyes and pesticides in aqueous solution. High photocatalytic degradation of all the pollutants was observed with doped TiO2. Structural and optical properties of the catalysts were characterized using XRD, BET surface area, UV-Vis. DRS, CHNS analysis, SEM, EDX, TEM, XPS, FTIR and TG. All the catalysts showed the anatase phase. The presence of dopants shifts the absorption of TiO2 into the visible region indicating the possibility of using visible light for photocatalytic processes.
Resumo:
The nearshore marine ecosystem is a dynamic environment impacted by many activities, especially the coastal waters and sediments contiguous to major urban areas. Although heavy metals are natural constituents of the marine environment, inputs are considered to be conservative pollutants and are potentially toxic, accumulate in the sediment, are bioconcentrated by organisms and may cause health problems to humans via the food chain. A variety of metals in trace amounts are essential for biological processes in all organisms, but excessive levels can be detrimental by acting as enzyme inhibitors. Discharge of industrial wastewater, agriculture runoff and untreated sewage pose a particularly serious threat to the coastal environment of Kerala, but there is a dearth of studies in documenting the contaminant metals. This study aimed principally to assess such contamination by examining the results of heavy metal (Cu, Pb, Cr, Ni, Zn, Cd and Hg) analysis in seawater, sediment and benthic biota from a survey of five transects along the central and northern coast of Kerala in 2008 covering a 10.0 km stretch of near shore environment in each transect. Trophic transfer of metal contaminants from aquatic invertebrates to its predators was also assessed, by employing a suitable benthic food chain model in order to understand which all metals are undergoing biotransference (transfer of metals from a food source to consumer).The study of present contamination levels will be useful for potential environmental remediation and ecosystem restoration at contaminated sites and provides a scientific basis for standards and protective measures for the coastal waters and sediments. The usefulness of biomonitor proposed in this study would allow identification of different bioavailable metals as well as provide an assessment of the magnitude of metal contamination in the coastal marine milieu. The increments in concentration of certain metals between the predator and prey discerned through benthic food chain can be interpreted as evidence of biotransference.