2 resultados para pellet speed
em Cochin University of Science
Resumo:
Most of the commercial and financial data are stored in decimal fonn. Recently, support for decimal arithmetic has received increased attention due to the growing importance in financial analysis, banking, tax calculation, currency conversion, insurance, telephone billing and accounting. Performing decimal arithmetic with systems that do not support decimal computations may give a result with representation error, conversion error, and/or rounding error. In this world of precision, such errors are no more tolerable. The errors can be eliminated and better accuracy can be achieved if decimal computations are done using Decimal Floating Point (DFP) units. But the floating-point arithmetic units in today's general-purpose microprocessors are based on the binary number system, and the decimal computations are done using binary arithmetic. Only few common decimal numbers can be exactly represented in Binary Floating Point (BF P). ln many; cases, the law requires that results generated from financial calculations performed on a computer should exactly match with manual calculations. Currently many applications involving fractional decimal data perform decimal computations either in software or with a combination of software and hardware. The performance can be dramatically improved by complete hardware DFP units and this leads to the design of processors that include DF P hardware.VLSI implementations using same modular building blocks can decrease system design and manufacturing cost. A multiplexer realization is a natural choice from the viewpoint of cost and speed.This thesis focuses on the design and synthesis of efficient decimal MAC (Multiply ACeumulate) architecture for high speed decimal processors based on IEEE Standard for Floating-point Arithmetic (IEEE 754-2008). The research goal is to design and synthesize deeimal'MAC architectures to achieve higher performance.Efficient design methods and architectures are developed for a high performance DFP MAC unit as part of this research.
Resumo:
While channel coding is a standard method of improving a system’s energy efficiency in digital communications, its practice does not extend to high-speed links. Increasing demands in network speeds are placing a large burden on the energy efficiency of high-speed links and render the benefit of channel coding for these systems a timely subject. The low error rates of interest and the presence of residual intersymbol interference (ISI) caused by hardware constraints impede the analysis and simulation of coded high-speed links. Focusing on the residual ISI and combined noise as the dominant error mechanisms, this paper analyses error correlation through concepts of error region, channel signature, and correlation distance. This framework provides a deeper insight into joint error behaviours in high-speed links, extends the range of statistical simulation for coded high-speed links, and provides a case against the use of biased Monte Carlo methods in this setting