5 resultados para patterns of growth
em Cochin University of Science
Resumo:
Results of exhaustive study of the effect of metallic flanges on H-plane radiation characteristics of V-slot waveguide antenna are presented . It has been established that the beam can be sharpened or broadened by varying the flange angle . The adjustment of the flange angle and flange width would further improve the radiation pattern , yielding optimum efficiency from the flanged system
Resumo:
Industrialization of our society has led to an increased production and discharge of both xenobiotic and natural chemical substances. Many of these chemicals will end up in the soil. Pollution of soils with heavy metals is becoming one of the most severe ecological and human health hazards. Elevated levels of heavy metals decrease soil microbial activity and bacteria need to develop different mechanisms to confer resistances to these heavy metals. Bacteria develop heavy-metal resistance mostly for their survivals, especially a significant portion of the resistant phenomena was found in the environmental strains. Therefore, in the present work, we check the multiple metal tolerance patterns of bacterial strains isolated from the soils of MG University campus, Kottayam. A total of 46 bacterial strains were isolated from different locations of the campus and tested for their resistant to 5 common metals in use (lead, zinc, copper, cadmium and nickel) by agar dilution method. The results of the present work revealed that there was a spatial variation of bacterial metal resistance in the soils of MG University campus, this may be due to the difference in metal contamination in different sampling location. All of the isolates showed resistance to one or more heavy metals selected. Tolerance to lead was relatively high followed by zinc, nickel, copper and cadmium. About 33% of the isolates showed very high tolerance (>4000μg/ml) to lead. Tolerance to cadmium (65%) was rather low (<100 μg/ml). Resistance to zinc was in between 100μg/ml - 1000μg/ml and the majority of them shows resistance in between 200μg/ml - 500μg/ml. Nickel resistance was in between 100μg/ml - 1000μg/ml and a good number of them shows resistance in between 300μg/ml - 400μg/ml. Resistance to copper was in between <100μg/ml - 500μg/ml and most of them showed resistance in between 300μg/ml - 400μg/ml. From the results of this study, it was concluded that heavy metal-resistant bacteria are widely distributed in the soils of MG university campus and the tolerance of heavy metals varied among bacteria and between locations
Resumo:
Development of continuous cell lines from shrimp is essential to investigate viral pathogens. Unfortunately, there is no valid cell line developed from crustaceans in general and shrimps in particular to address this issue. Lack of information on the requirements of cells in vitro limits the success of developing a cell line, where the microenvironment of a cell culture, provided by the growthmedium, is of prime importance. Screening and optimization of growth medium components based on statistical experimental designs have been widely used for improving the efficacy of cell culture media. Accordingly, we applied Plackett–Burman design and response surface methodology to study multifactorial interactions between the growth factors in shrimp cell culture medium and to identify the most important ones for growth of lymphoid cell culture from Penaeus monodon. The statistical screening and optimization indicated that insulin like growth factor-I (IGF-I) and insulin like growth factor-II (IGF-II) at concentrations of 100 and 150 ng ml-1, respectively, could significantly influence the metabolic activity and DNA synthesis of the lymphoid cells. An increase of 53 % metabolic activity and 24.8 % DNA synthesis could be obtained, which suggested that IGF-I and IGFII had critical roles in metabolic activity and DNA synthesis of shrimp lymphoid cells
Resumo:
Cobalt nanotubes (CoNTs) with very high longitudinal coercivity were prepared by electrodeposition of cobalt acetate for the first time by using anodized alumina (AAO) template. They were then characterized with X-ray diffraction (XRD), a field emission scanning electron microscope (FESEM), and a transmission electron microscope (TEM). Formation of a highly ordered hexagonal cobalt phase is observed. Room temperature SQUID (superconducting quantum interference device) magnetometer measurements indicate that the easy axis of magnetization is parallel to the nanotube axis. These CoNTs exhibit very high longitudinal coercivity of ∼820 Oe. A very high intertubular interaction resulting from magnetostatic dipolar interaction between nanotubes is observed. Thick-walled nanotubes were also fabricated by using cobalt acetate tetrahydrate precursors. A plausible mechanism for the formation of CoNTs based on mobility assisted growth is proposed. The role of the hydration layer and the mobility of metal ions are elucidated in the case of the growth mechanism of one-dimensional geometry