4 resultados para parabolic-elliptic equation, inverse problems, factorization method
em Cochin University of Science
Resumo:
During recent years, the theory of differential inequalities has been extensively used to discuss singular perturbation problems and method of lines to partial differential equations. The present thesis deals with some differential inequality theorems and their applications to singularly perturbed initial value problems, boundary value problems for ordinary differential equations in Banach space and initial boundary value problems for parabolic differential equations. The method of lines to parabolic and elliptic differential equations are also dealt The thesis is organised into nine chapters
Resumo:
An immense variety of problems in theoretical physics are of the non-linear type. Non~linear partial differential equations (NPDE) have almost become the rule rather than an exception in diverse branches of physics such as fluid mechanics, field theory, particle physics, statistical physics and optics, and the construction of exact solutions of these equations constitutes one of the most vigorous activities in theoretical physics today. The thesis entitled ‘Some Non-linear Problems in Theoretical Physics’ addresses various aspects of this problem at the classical level. For obtaining exact solutions we have used mathematical tools like the bilinear operator method, base equation technique and similarity method with emphasis on its group theoretical aspects. The thesis deals with certain methods of finding exact solutions of a number of non-linear partial differential equations of importance to theoretical physics. Some of these new solutions are of relevance from the applications point of view in diverse branches such as elementary particle physics, field theory, solid state physics and non-linear optics and give some insight into the stable or unstable behavior of dynamical Systems The thesis consists of six chapters.
Resumo:
A new geometry (semiannular) for Josephson junction has been proposed and theoretical studies have shown that the new geometry is useful for electronic applications [1, 2]. In this work we study the voltage‐current response of the junction with a periodic modulation. The fluxon experiences an oscillating potential in the presence of the ac‐bias which increases the depinning current value. We show that in a system with periodic boundary conditions, average progressive motion of fluxon commences after the amplitude of the ac drive exceeds a certain threshold value. The analytic studies are justified by simulating the equation using finite‐difference method. We observe creation and annihilation of fluxons in semiannular Josephson junction with an ac‐bias in the presence of an external magnetic field.