7 resultados para optical water mass classification

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plankton community, drawn from a vary wide variety of animal phyla, formed the basic food supply of marine life and indicators of water mass. The term meroplankton generally referred to that portion of the zooplankton which is transient in nature, remaining rest of their lives in the nektonic or benthic environment. This group was selected for intensive studies, considering the role of meroplankton in the economy of the sea and the scarcity of literature on them from the Indian Ocean. The preser .udy besides providing information regarding the fixation and preservation !e _ iniques and biochemical aspects of tropical meroplankton, also consolidates information regarding their zoogeography in the Indian Ocean region, with a view to amplifying the limited information available from this area. The distribution studies are based on the collections made during the International Indian Ocean Expedition (1960-65), whereas the material for preservation and biochemical studies was collected from the coastal waters during 1968-1978. Salient features:- 2% of formaldehyde buffered with 2% borax, added to the plankton in the ratio of 9:1 was found the best fixative. On fixation the plankton underwent shrinkage due to loss of 15 to 87% water. Addition of antioxidants prevented colour fading. Narcotization by different specific reagents prior to fixation reduced distortions due to violent reaction and improved morphological conditions. One percent formaldehyde solution in sea water buffered with borax or neutralised with calcium carbonate perfectly preserved majority of meroplankton. Equally good was one percent propylene phenoxetol buffered with borax. Biochemical compostion of vaioous taxa showed variations according to their age class, size groups metamorphosing stage, feeding mechanism, type of organism fed and time of collection. General distribution studies of 4 meroplankton taxa - Anthozoan larvae, cirripedia larvae, sipunculoid larvae and gastropod larvae stowed abundance in the coastal areas especially during the SW monsoon period. Based on the larval distribution different zoo-geographical areas in the Indian Ocean are differentiated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical sensors have growing interest in the determination of food additives, which are creating toxicity and may cause serious health concern, drugs and metal ions. A chemical sensor can be defined as a device that transforms chemical information, ranging from the concentration of a specific sample component to total composition analysis, into an analytically useful signal. The chemical information may be generated from a chemical reaction of the analyte or from a physical property of the system investigated. Two main steps involved in the functioning of a chemical sensor are recognition and transduction. Chemical sensors employ specific transduction techniques to yield analyte information. The most widely used techniques employed in chemical sensors are optical absorption, luminescence, redox potential etc. According to the operating principle of the transducer, chemical sensors may be classified as electrochemical sensors, optical sensors, mass sensitive sensors, heat sensitive sensors etc. Electrochemical sensors are devices that transform the effect of the electrochemical interaction between analyte and electrode into a useful signal. They are very widespread as they use simple instrumentation, very good sensitivity with wide linear concentration ranges, rapid analysis time and simultaneous determination of several analytes. These include voltammetric, potentiometric and amperometric sensors. Fluorescence sensing of chemical and biochemical analytes is an active area of research. Any phenomenon that results in a change of fluorescence intensity, anisotropy or lifetime can be used for sensing. The fluorophores are mixed with the analyte solution and excited at its corresponding wavelength. The change in fluorescence intensity (enhancement or quenching) is directly related to the concentration of the analyte. Fluorescence quenching refers to any process that decreases the fluorescence intensity of a sample. A variety of molecular rearrangements, energy transfer, ground-state complex formation and collisional quenching. Generally, fluorescence quenching can occur by two different mechanisms, dynamic quenching and static quenching. The thesis presents the development of voltammetric and fluorescent sensors for the analysis of pharmaceuticals, food additives metal ions. The developed sensors were successfully applied for the determination of analytes in real samples. Chemical sensors have multidisciplinary applications. The development and application of voltammetric and optical sensors continue to be an exciting and expanding area of research in analytical chemistry. The synthesis of biocompatible fluorophores and their use in clinical analysis, and the development of disposable sensors for clinical analysis is still a challenging task. The ability to make sensitive and selective measurements and the requirement of less expensive equipment make electrochemical and fluorescence based sensors attractive.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The central theme of the work presented in this thesis is a careful investigation of the factors influencing the attenuation of laser beam through sea water. The thesis presents a detailed report of the work done by the author on the attenuation studies in sea water and on laser propagation through a turbulent medium. The thesis contains six chapters which are more or less self-contained with separate abstracts and references. The first chapter is divided into two parts. The first part introduces the subject of laser propagation through sea water. It includes a brief description of optical properties of sea water followed by a review of the earlier works on attenuation studies in water. The second part gives the theoretical background of the problem of laser propagation through a turbulent medium.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In situ methods used for water quality assessment have both physical and time constraints. Just a limited number of sampling points can be performed due to this, making it difficult to capture the range and variability of coastal processes and constituents. In addition, the mixing between fresh and oceanic water creates complex physical, chemical and biological environment that are difficult to understand, causing the existing measurement methodologies to have significant logistical, technical, and economic challenges and constraints. Remote sensing of ocean colour makes it possible to acquire information on the distribution of chlorophyll and other constituents over large areas of the oceans in short periods. There are many potential applications of ocean colour data. Satellite-derived products are a key data source to study the distribution pattern of organisms and nutrients (Guillaud et al. 2008) and fishery research (Pillai and Nair 2010; Solanki et al. 2001. Also, the study of spatial and temporal variability of phytoplankton blooms, red tide identification or harmful algal blooms monitoring (Sarangi et al. 2001; Sarangi et al. 2004; Sarangi et al. 2005; Bhagirathan et al., 2014), river plume or upwelling assessments (Doxaran et al. 2002; Sravanthi et al. 2013), global productivity analyses (Platt et al. 1988; Sathyendranath et al. 1995; IOCCG2006) and oil spill detection (Maianti et al. 2014). For remote sensing to be accurate in the complex coastal waters, it has to be validated with the in situ measured values. In this thesis an attempt to study, measure and validate the complex waters with the help of satellite data has been done. Monitoring of coastal ecosystem health of Arabian Sea in a synoptic way requires an intense, extensive and continuous monitoring of the water quality indicators. Phytoplankton determined from chl-a concentration, is considered as an indicator of the state of the coastal ecosystems. Currently, satellite sensors provide the most effective means for frequent, synoptic, water-quality observations over large areas and represent a potential tool to effectively assess chl-a concentration over coastal and oceanic waters; however, algorithms designed to estimate chl-a at global scales have been shown to be less accurate in Case 2 waters, due to the presence of water constituents other than phytoplankton which do not co-vary with the phytoplankton. The constituents of Arabian Sea coastal waters are region-specific because of the inherent variability of these optically-active substances affected by factors such as riverine input (e.g. suspended matter type and grain size, CDOM) and phytoplankton composition associated with seasonal changes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Important issues related to femtosecond (fs) pulses and its relevance to this thesis are discussed. A fundamental characteristic, like the timebandwidth product for fs pulses is decribed in detail. A brief review of generation of ultrashort pulses and its propagation through an optically transparent media are presented. Interaction of strong pulses with matter and different ionization processes are also described. An overview of the thesis is presented at the end