47 resultados para optical antenna
em Cochin University of Science
Resumo:
The design and development of an L-band printed dipole antenna. optimized for wide-band applications near first resonance, is reported. This design has achieved more than 48% impedance bandwidth (VSWR 2:1), without degrading its overall radiation efficiency
Resumo:
A new microstrip antenna element is described which exhibits polarization agility. This is achieved by employing a T-slot radiator which is driven by the edge fields of a balanced microstrip line. The balanced line can support two propagating modes. namely. an even mode and an odd mode, and be switching between these modes. the orthogonal arms of the T-slot radiator are separately excited thus forming orthogonally polarized radiated fields. A nucrostrip patch antenna, which displays polarization agility using the sane mechanism, is also described
Resumo:
A simple technique to improve the impedance bandwidth of a circular microstrip patch antenna using two sectorial slots is proposed. Using this design more than 5% impedance bandwidth is obtained. The added advantage of this new antenna is that it can be fed by a 50- microstrip line
Resumo:
A new method for enhancing the 2.1 VSWR impedance bandwidth of microstrip antennas is presented. Bandwidth enhancement is achieved by loading the microstrip antenna by a ceramic microwave dielectric resonator (DR). The validity of this technique has been established using rectangular and circular radiating geometries. This method improves the bandwidth of a rectangular microstrip antenna to more than 10% (= 5 times that of a conventional rectangular microstrip antenna) with an enhanced gain of I dB
Resumo:
A novel dual frequency dual-polarized square microstrip patch antenna embedded with a slot is presented. The proposed antenna offers tunability of the frequency ratio between the two frequencies by adjusting the slot dimensions. This configuration also provides a size reduction up to -51 and 35% for the two modes as compared to a square micro strip patch antenna
Resumo:
A compact microstrip antenna with circular polarization radiation is demonstrated.A reducation in the required parameters for achieving CP radiation makes the present antenna design simpler
Resumo:
Experimental studies on a compact dual frequency microstrip antenna are presented. This antenna configuration provides an area reduction of 40% compared to a standard rectangular antenna operating at the same frequency without much degradation of the gain. The antenna structure can be modified to achieve the desired ratio between the two resonant frequencies
Resumo:
A new compact dual-band, dual-polarized microstrip antenna is presented. 7'iris antenna resonates at two frequencies with different polarizations: a linearly polarized one for terrestrial communication, and a circularly polarized one for satellite mobile communication. This antenna also provides an area reduction of 70% compared to a standard rectangular patch antenna
Resumo:
A new configuration that employs a conducting conformal strip to excite the low-profile equilaterial-triangular dielectric resonator antenna (DRA) of very high permittivity is proposed. As compared with the previous aperture-coupling configuration, the new configuration has a wider impedance bandwidth (- 5.5%) and a higher front-to-back radiation ratio. The return loss, radiation patterns, and antenna gain are measured and discussed
Resumo:
Dual frequency operation is achieved from a compact microstrip antenna by loading a pair of narrow slots close to its radiating edges. The two frequencies have parallel polarization planes and similar radiation characteristics. The ratio between the two operating frequencies can be tuned in the range (1.14-1. 24), which is much smaller than that of similar designs. The above excellent radiation characteristics are achieved along with an area reduction of - 75% compared to the standard rectangular patch
Resumo:
A novel H-shaped patch antenna suitable for wireless and satellite communications is presented. The new antenna has some advantages compared to conventional microstrip patch antennas, such as small size, a fewer number of modes, no harmonic resonance, and the provision of pure reactive impedances at its harmonics that can result in increasing the transmitter efficiency. The basic principles and design procedure are introduced. Two antennas at two different frequencies, 4 and 10 GHz, are designed, fabricated, and measured. The measured results show a good agreement with the predicted ones
Resumo:
A broadband rectangular tnicrostrip antenna utilizing an electromagnetically coupled L-strip feed is presented. Experimental study shows a 2:1 VSWR bandwidth of a 10% and excellent cross-polarization performance with a radiation coverage almost as same as that of the rectangular microstrip antenna fed by conventional methods. The variation of bandwidth for different feed parameters is also studied. The proposed antenna is suitable for broadband communications
Resumo:
Development of a new compact circular-sided microstrip antenna is presented. This antenna offers considerable area re- TABLE 2. Variation of Resonant Frequencies duction compared to standard rectangular microstrip antenna designed for the same frequency. Typical antenna design and experimental results for circular polarization are also demonstrated. 77je antenna has a 3-dB axial ratio bandwidth of 1.5%
Resumo:
Experimental and simulated results for a dual-port dual-polarized microstrip antenna are presented. The antenna excites two orthogonally polarized resonant frequencies providing an isolation of -30 dB between the ports. The patch geometry consists of two circular arcs of different radii with their centers displaced by a distance. This new design offers an area reduction of -70% coinpared to it standard rectangular microstrip antenna with a reduction in gain of 1.7 dB
Resumo:
The mathematical formulation of empirically developed formulas Jirr the calculation of the resonant frequency of a thick-substrate (h s 0.08151 A,,) microstrip antenna has been analyzed. With the use qt' tunnel-based artificial neural networks (ANNs), the resonant frequency of antennas with h satisfying the thick-substrate condition are calculated and compared with the existing experimental results and also with the simulation results obtained with the use of an IE3D software package. The artificial neural network results are in very good agreement with the experimental results