8 resultados para one-dimensional model,

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We establish numerically the validity of Huberman-Rudnick scaling relation for Lyapunov exponents during the period doubling route to chaos in one dimensional maps. We extend our studies to the context of a combination map. where the scaling index is found to be different.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report the measurements of thermal diffusivity of nano Ag metal dispersed ceramic alumina matrix sintered at different temperatures using laser induced non-destructive photoacoustic technique. Measurements of thermal diffusivity also have been carried out on specimens with various concentration of nano metal. Analysis of the data is done on the basis of one-dimensional model of Rosencwaig and Gersho. The present measurements on the thermal diffusivity of nano metal dispersed ceramic alumina shows that porosity has a great influence on the heat transport and the thermal diffusivity value. The present analysis also shows that the inclusion of nano metal into ceramic matrix increases its interconnectivity and hence the thermal diffusivity value. The present study on the samples sintered at different temperature shows that the porosity of the ceramics varies considerably with the change in sintering temperature. The results are interpreted in terms of phonon assisted heat transfer mechanism and the exclusion of pores with the increase in sintering temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report the measurements of thermal diffusivity of nano Ag metal dispersed ceramic alumina matrix sintered at different temperatures using laser induced non-destructive photoacoustic technique. Measurements of thermal diffusivity also have been carried out on specimens with various concentration of nano metal. Analysis of the data is done on the basis of one-dimensional model of Rosencwaig and Gersho. The present measurements on the thermal diffusivity of nano metal dispersed ceramic alumina shows that porosity has a great influence on the heat transport and the thermal diffusivity value. The present analysis also shows that the inclusion of nano metal into ceramic matrix increases its interconnectivity and hence the thermal diffusivity value. The present study on the samples sintered at different temperature shows that the porosity of the ceramics varies considerably with the change in sintering temperature. The results are interpreted in terms of phonon assisted heat transfer mechanism and the exclusion of pores with the increase in sintering temperature

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report the measurements of thermal diffusivity of nano Ag metal dispersed ceramic alumina matrix sintered at different temperatures using laser induced non-destructive photoacoustic technique. Measurements of thermal diffusivity also have been carried out on specimens with various concentration of nano metal. Analysis of the data is done on the basis of one-dimensional model of Rosencwaig and Gersho. The present measurements on the thermal diffusivity of nano metal dispersed ceramic alumina shows that porosity has a great influence on the heat transport and the thermal diffusivity value. The present analysis also shows that the inclusion of nano metal into ceramic matrix increases its interconnectivity and hence the thermal diffusivity value. The present study on the samples sintered at different temperature shows that the porosity of the ceramics varies considerably with the change in sintering temperature. The results are interpreted in terms of phonon assisted heat transfer mechanism and the exclusion of pores with the increase in sintering temperature

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The laser induced non-destructive photoacoustic technique has been employed to measure the thermal diffusivity of lanthanum phosphate ceramics prepared by the sol–gel route. The thermal diffusivity value was evaluated by knowing the transition frequency between the thermally thin to thermally thick region from the log–log plot of photoacoustic amplitude versus chopping frequency. Analysis of the data was carried out on the basis of the one-dimensional model of Rosencwaig and Gersho. The present investigation reveals that the sintering temperature has great influence on the propagation of heat carriers and hence on the thermal diffusivity value. The results were interpreted in terms of variations in porosity with sintering temperature as well as with changes in grain size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A laser-induced photoacoustic technique was employed to investigate thermal transport through nanocrystalline CePO4 samples prepared via the sol–gel route. Evaluation of thermal diffusivity was carried out using the one-dimensional model of Rosencwaig and Gersho for the reflection configuration of the photoacoustic method. Structural analyses of samples revealed that they are nanoporous in nature, possessing micron-sized grains. Analysis of results shows that thermal diffusivity value varies with sintering temperature. Results are explained in terms of the variation in porosity with sintering temperature and the effects of various scattering mechanisms on the propagation of phonons through the nanoporous ceramic matrix. Further analyses confirm that apart from porosity, grain boundary resistance and interface thermal resistance influence the effective value of thermal diffusivity of the samples under investigation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Laser-induced nondestructive photoacoustic (PA) technique has been employed to determine the thermal diffusivity of nanometal (Ag) dispersed ceramic alumina matrix sintered at different temperatures. The thermal diffusivity values are evaluated by knowing the transition frequency from the amplitude spectrum of PA signal using the one-dimensional heat flow model of Rosencwaig and Gersho. Analysis of the data shows that heat transport and hence the thermal diffusivity value is greatly affected by the influence of incorporation of foreign atom. It is also seen that sintering temperature affects the thermal diffusivity value in a substantial manner. The results are interpreted in terms of variation in porosity and carrier-assisted heat transport mechanism in nanometal dispersed ceramics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis deals with the study of light beam propagation through different nonlinear media. Analytical and numerical methods are used to show the formation of solitonS in these media. Basic experiments have also been performed to show the formation of a self-written waveguide in a photopolymer. The variational method is used for the analytical analysis throughout the thesis. Numerical method based on the finite-difference forms of the original partial differential equation is used for the numerical analysis.In Chapter 2, we have studied two kinds of solitons, the (2 + 1) D spatial solitons and the (3 + l)D spatio-temporal solitons in a cubic-quintic medium in the presence of multiphoton ionization.In Chapter 3, we have studied the evolution of light beam through a different kind of nonlinear media, the photorcfractive polymer. We study modulational instability and beam propagation through a photorefractive polymer in the presence of absorption losses. The one dimensional beam propagation through the nonlinear medium is studied using variational and numerical methods. Stable soliton propagation is observed both analytically and numerically.Chapter 4 deals with the study of modulational instability in a photorefractive crystal in the presence of wave mixing effects. Modulational instability in a photorefractive medium is studied in the presence of two wave mixing. We then propose and derive a model for forward four wave mixing in the photorefractive medium and investigate the modulational instability induced by four wave mixing effects. By using the standard linear stability analysis the instability gain is obtained.Chapter 5 deals with the study of self-written waveguides. Besides the usual analytical analysis, basic experiments were done showing the formation of self-written waveguide in a photopolymer system. The formation of a directional coupler in a photopolymer system is studied theoretically in Chapter 6. We propose and study, using the variational approximation as well as numerical simulation, the evolution of a probe beam through a directional coupler formed in a photopolymer system.