5 resultados para nitrogen source
em Cochin University of Science
Resumo:
Xylanases with hydrolytic activity on xylan, one of the hemicellulosic materials present in plant cell walls, have been identified long back and the applicability of this enzyme is constantly growing. All these applications especially the pulp and paper industries require novel enzymes. There has been lot of documentation on microbial xylanases, however, none meeting all the required characteristics. The characters being sought are: higher production, higher pH and temperature optima, good stabilities under these conditions and finally the low associated cellulase and protease production. The present study analyses various facets of xylanase biotechnology giving emphasis on bacterial xylanases. Fungal xylanases are having problems like low pH values for both enzyme activity and growth. Moreover, the associated production of cellulases at significant levels make fungal xylanases less suitable for application in paper and pulp industries.Bacillus SSP-34 selected from 200 isolates was clearly having xylan catabolizing nature distinct from earlier reports. The stabilities at higher temperatures and pH values along with the optimum conditions for pH and temperature is rendering Bacillus SSP-34 xylanase more suitable than many of the previous reports for application in pulp and paper industries.Bacillus SSP-34 is an alkalophilic thertmotolerant bacteria which under optimal cultural conditions as mentioned earlier, can produce 2.5 times more xylanase than the basal medium.The 0.5% xylan concentration in the medium was found to the best carbon source resulting in 366 IU/ml of xylanase activity. This induction was subjected to catabolite repression by glucose. Xylose was a good inducer for xylanase production. The combination of yeast extract and peptone selected from several nitrogen sources resulted in the highest enzyme production (379+-0.2 IU/ml) at the optimum final concentration of 0.5%. All the cultural and nutritional parameters were compiled and comparative study showed that the modified medium resulted in xylanase activity of 506 IU/ml, 5 folds higher than the basal medium.The novel combination of purification techniques like ultrafiltraton, ammonium sulphate fractionation, DEAE Sepharose anion exchange chromatography, CM Sephadex cation exchange chromatography and Gel permeation chromatography resulted in the purified xylanase having a specific activity of 1723 U/mg protein with 33.3% yield. The enzyme was having a molecular weight of 20-22 kDa. The Km of the purified xylanase was 6.5 mg of oat spelts xylan per ml and Vmax 1233 µ mol/min/mg protein.Bacillus SSP-34 xylanase resulted in the ISO brightness increase from 41.1% to 48.5%. The hydrolytic nature of the xylanase was in the endo-form.Thus the organism Bacillus SSP-34 was having interesting biotechnological and physiological aspects. The SSP-34 xylanase having desired characters seems to be suited for application in paper and pulp industries.
Resumo:
The thesis comprises a set of experiments mainly focused on the improvement of L-glutamic acid fennentation. Much attention has been given to use of locally available raw materials, culturing the organism on inert solid substrates and also immobilization of the bacterial cells from the view point of long term utilization of biocatalyst and continuous operation of the stabilized system. Studies were also carried out for the down stream processing for the extraction and purification of L-glutamic acid. An attempt was made to study the morphological features of the microorganism including the cell premeability. In relation with the accumulation of glutamic acid within the cells an approach was made to study the behaviour of the Brevibacterium cells when they are exposed to hyper osmotic environment. Attempts were also made to study the requirement of iron and production of siderophores by this microbial strain. The search for a suitable nitrogen source for glutamate fermentation ended with a promising result that they got a potent urease activity and it can be utilized for many biotransfonnation studies. The entire thesis is presented in three sections, viz. introductory section, experimental section and the concluding section
Resumo:
A total of 34 yeast isolates were characterized from 4 water samples collected from Kongsfjord at Ny Alseund region of Norwegion Artic during the Indian Artic summer expedition of 2009.They were studied for the effect of tempereture and salt concentration on growth as well as for their ability to produce various hydrolytic enzymes at two different temperatures. Result showed that 5 out of 8 genera were common to all the stations. Cryptococcus was the predominant genera folowed by Trichosporan and Rhodotorula 82% of the yeast isolates were oxidative in nature and except filobasidium all the isolates used nitrate as a nitrogen source for growth. Yeast isolates from all the ststions showed growth at 4 and 20 degree centigarade. These temperatures were chosen as most of the bacterial and yeast isolates showed psychrotrop[hic nature. 94% of the yeast isolates showed growth at 2.0M and lipolytic activity were marginally less than 4.None of the isolates produced amylase enzymes when incubated at 4 and 20. The present study highlights the wide tolerence of the psychrotrophic yeast isolates to temperature and salinity as well as their potential in biotechnology
Resumo:
Engyodontium album isolated from marine sediment produced protease, which was active at pH 11. Process parameters influencing the production of alkaline protease by marine E. album was optimized. Particle size of <425 mm, 60% initial moisture content and incubation at 25 8C for 120 h were optimal for protease production under solid state fermentation (SSF) using wheat bran. The organism has two optimal pH (5 and 10) for maximal enzyme production. Sucrose as carbon source, ammonium hydrogen carbonate as additional inorganic nitrogen source and amino acid leucine enhanced enzyme production during SSF. The protease was purified and partially characterized. A 16-fold purified enzyme was obtained after ammonium sulphate precipitation and ion-exchange chromatography. Molecular weight of the purified enzyme protein was recorded approximately 38 kDa by SDS-PAGE. The enzyme showed maximum activity at pH 11 and 60 8C. Activity at high temperature and high alkaline pH suggests suitability of the enzyme for its application in detergent industry
Resumo:
Controlling the inorganic nitrogen by manipulating carbon / nitrogen ratio is a method gaining importance in aquaculture systems. Nitrogen control is induced by feeding bacteria with carbohydrates and through the subsequent uptake of nitrogen from the water for the synthesis of microbial proteins. The relationship between addition of carbohydrates, reduction of ammonium and the production of microbial protein depends on the microbial conversion coefficient. The carbon / nitrogen ratio in the microbial biomass is related to the carbon contents of the added material. The addition of carbonaceous substrate was found to reduce inorganic nitrogen in shrimp culture ponds and the resultant microbial proteins are taken up by shrimps. Thus, part of the feed protein is replaced and feeding costs are reduced in culture systems.The use of various locally available substrates for periphyton based aquaculture practices increases production and profitability .However, these techniques for extensive shrimp farming have not so far been evaluated. Moreover, an evaluation of artificial substrates together with carbohydrate source based farming system in reducing inorganic nitrogen production in culture systems has not yet been carried-out. Furthermore, variations in water and soil quality, periphyton production and shrimp production of the whole system have also not been determined so-far.This thesis starts with a general introduction , a brief review of the most relevant literature, results of various experiments and concludes with a summary (Chapter — 9). The chapters are organised conforming to the objectives of the present study. The major objectives of this thesis are, to improve the sustainability of shrimp farming by carbohydrate addition and periphyton substrate based shrimp production and to improve the nutrient utilisation in aquaculture systems.