5 resultados para nickel-base superalloy
em Cochin University of Science
Resumo:
A new PVC membrane sensor, which is highly selective towards Ni (II) ions, has been developed using a thiophene-derivative Schiff base as the ionophore. The best performance was exhibited by the membrane having the composition percentage ratio of 5:3:61:31 (ionophore:NaTPB:DBP:PVC) (w=w), where NaTPB is the anion excluder, sodium tetraphenylborate and DBP is the plasticizing agent (dibutyl phthalate). The membrane exhibited a good Nernstian response for nickel ions over the concentration range of 1.0 10 1– 5.0 10 6M (limit of detection is 1.8 10 6 M) with a slope of 29.5 1.0mV per decade of activity. It has a fast response time of<20 s and can be used for a period of 4 months with good reproducibility. The sensor is suitable for use in aqueous solutions of a wide pH range of 3.2–7.9. The sensor shows high selectivity to nickel ions over a large number of mono-, bi- and trivalent cations. It has been successfully used as an indicator electrode in the potentiometric titration of nickel ions against EDTA and also for direct determination of nickel content in real samples – wastewater samples from electroplating industries and Indian chocolates.
Resumo:
A new PVC membrane sensor, which is highly selective towards Ni (II) ions, has been developed using a thiophene-derivative Schiff base as the ionophore. The best performance was exhibited by the membrane having the composition percentage ratio of 5:3:61:31 (ionophore:NaTPB:DBP:PVC) (w=w), where NaTPB is the anion excluder, sodium tetraphenylborate and DBP is the plasticizing agent (dibutyl phthalate). The membrane exhibited a good Nernstian response for nickel ions over the concentration range of 1.0 10 1– 5.0 10 6M (limit of detection is 1.8 10 6 M) with a slope of 29.5 1.0mV per decade of activity. It has a fast response time of<20 s and can be used for a period of 4 months with good reproducibility. The sensor is suitable for use in aqueous solutions of a wide pH range of 3.2–7.9. The sensor shows high selectivity to nickel ions over a large number of mono-, bi- and trivalent cations. It has been successfully used as an indicator electrode in the potentiometric titration of nickel ions against EDTA and also for direct determination of nickel content in real samples – wastewater samples from electroplating industries and Indian chocolates.
Resumo:
Two new complexes, [MII(L)(Cl)(H2O)2]·H2O (where M=Ni or Ru and L = heterocyclic Schiff base, 3- hydroxyquinoxaline-2-carboxalidene-4-aminoantipyrine), have been synthesized and characterized by elemental analysis, FT-IR, UV–vis diffuse reflectance spectroscopy, FAB-MASS, TG–DTA, AAS, cyclic voltammetry, conductance and magnetic susceptibility measurements. The complexes have a distorted octahedral structure andwere found to be effective catalysts for the hydrogenation of benzene. The influence of several reaction parameters such as reaction time, temperature, hydrogen pressure, concentration of the catalyst and concentration of benzenewas tested. A turnover frequency of 5372 h−1 has been found in the case of ruthenium complex for the reduction of benzene at 80 ◦C with 3.64×10−6 mol catalyst, 0.34 mol benzene and at a hydrogen pressure of 50 bar. In the case of the nickel complex, a turnover frequency of 1718 h−1 has been found for the same reaction with 3.95×10−6 mol catalyst under similar experimental conditions. The nickel complex shows more selectivity for the formation of cyclohexene while the ruthenium complex is more selective for the formation of cyclohexane
Resumo:
Some new transition metal complexes of the Schiff base quinoxaline-2-car boxalidene-2-aminophenol (HQAP) have been synthesized and characterized by elemental analyses, conductance and magnetic measurements and IR and UV-Visible spectral studies. The complexes have the following empirical formulae: [Mn(QAP121, [Fe(QAPl2C1I, [Co(QAPl21, [Ni(QAP121 and [Cu(QAP121. A tetrahedral structure has been assigned for the manganese(=), cobalt(II1, nickel(II1 and copper(II1 complexes. For the iron(IIIl complex an octahedral dimeric structure has been suggested
Resumo:
Two novel polystyrene-supported Schiff bases, PSOPD and PSHQAD, were synthesized. A polymerbound aldehyde was condensed with o-phenylenediamine to prepare the Schiff base PSOPD, and a polymer-bound amine was condensed with 3-hydroxyquinoxaline-2-carboxaldehyde to prepare the Schiff base PSHQAD. This article addresses the study of cobalt (II), nickel (II), and copper (II) complexes of these polymer-bound Schiff bases. All the complexes were characterized, and the probable geometry was suggested using elemental analysis, diffuse reflectance ultraviolet, Fourier transform infrared spectroscopy, thermal studies, surface area studies, and magnetic measurements.