19 resultados para nickel(II)

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis deals with the synthesis, characterization and catalytic activity studies of supported cobalt(ii), nickel(II) and copper(II) complexes of O-phenylenediamine and Schiff bases derived from 3-hydroxyquinoxaline -2-carboxaldehyde. Zeolite encapsulation and polymer anchoring was employed for supporting the complexes. The characterization techniques proved that the encapsulation as well as polymer supporting has been successfully achieved. The catalytic activity studies revealed that the activities of the simple complexes are improved upon encapsulation. Various characterization techniques are used such as, chemical analysis, EPR, magnetic measurements, FTIR studies, thermal analysis, electronic spectra, XRD, SEM, surface area, and GC.The present study indicated that the that the mechanism of oxidation of catechol and DTBC by hydrogen peroxide is not altered by the change in the coordination sphere around the metal ion due to encapsulation. This fact suggests outer sphere mechanism for the reactions. The catalytic activity by zeolite encapsulated complex was found to be slower than that by the neat complex. The slowing down of the reaction in the zeolite case is probably due to the constraint imposed by the zeolite framework. The rate of DTBC ( 3,5-di-tert-butylchatechol)oxidation was found to be greater than the rate of catechol oxidation. This is obviously due to the presence of electron donating tertiary butyl groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metal complex, [Ni(en)2(H2O)2](NO3)2 (en = ethylenediamine), was decomposed in a static furnace at 200 C by autogenous decomposition to obtain phase pure metallic nickel nanocrystallites. The nickel metal thus obtained was studied by XRD, IR spectra, SEM and CHN analysis. The nickel crystallites are in the nanometer range as indicated by XRD studies. The IR spectral studies and CHN analyses show that the surface is covered with a nitrogen containing species. Thermogravimetric mass gain shows that the product purity is high (93%). The formed nickel is stable and resistant to oxidation up to 350 C probably due to the coverage of nitrogen containing species. Activation energy for the oxidation of the prepared nickel nanocrystallites was determined by non-isothermal methods and was found to depend on the conversion ratio. The oxidation kinetics of the nickel crystallites obeyed a Johnson–Mehl–Avrami mechanism probably due to the special morphology and crystallite strain present on the metal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two novel polystyrene-supported Schiff bases, PSOPD and PSHQAD, were synthesized. A polymerbound aldehyde was condensed with o-phenylenediamine to prepare the Schiff base PSOPD, and a polymer-bound amine was condensed with 3-hydroxyquinoxaline-2-carboxaldehyde to prepare the Schiff base PSHQAD. This article addresses the study of cobalt (II), nickel (II), and copper (II) complexes of these polymer-bound Schiff bases. All the complexes were characterized, and the probable geometry was suggested using elemental analysis, diffuse reflectance ultraviolet, Fourier transform infrared spectroscopy, thermal studies, surface area studies, and magnetic measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dept.of Applied Chemistry,Cochin University of Science and Technology

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two new complexes, [MII(L)(Cl)(H2O)2]·H2O (where M=Ni or Ru and L = heterocyclic Schiff base, 3- hydroxyquinoxaline-2-carboxalidene-4-aminoantipyrine), have been synthesized and characterized by elemental analysis, FT-IR, UV–vis diffuse reflectance spectroscopy, FAB-MASS, TG–DTA, AAS, cyclic voltammetry, conductance and magnetic susceptibility measurements. The complexes have a distorted octahedral structure andwere found to be effective catalysts for the hydrogenation of benzene. The influence of several reaction parameters such as reaction time, temperature, hydrogen pressure, concentration of the catalyst and concentration of benzenewas tested. A turnover frequency of 5372 h−1 has been found in the case of ruthenium complex for the reduction of benzene at 80 ◦C with 3.64×10−6 mol catalyst, 0.34 mol benzene and at a hydrogen pressure of 50 bar. In the case of the nickel complex, a turnover frequency of 1718 h−1 has been found for the same reaction with 3.95×10−6 mol catalyst under similar experimental conditions. The nickel complex shows more selectivity for the formation of cyclohexene while the ruthenium complex is more selective for the formation of cyclohexane

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study deals with structural and spectral investigations of transition metal complexes of di-2-pyridyl ketone N(4),N(4)-disubstituted thiosemicarbazones. The main objective and scope of the work deals with di-2-pyridyl ketone N(4),N(4)-disubstituted thiosemicarbazones are quardridentate NNNS donor ligands. To chosen this ligand for study because, the ligands are prepared and characterized for the first time, since there are two pyridyl nitorgens, dimmers and polymers of complexes may result leading to interesting structural aspects. The work includes the preparation of the thiosemicarbzones and their structural and spectral studies, synthesis and spectral characterization of complexes of copper(II),,nickel(II),manganese(II), dioxovanadium(V),cobalt(III),zinc(II),cadmium(II) of the ligand HL, synthesis and spectral characterization of complexes of copper(II),manganese(II), of the ligand HL and the development of X-ray quality crystals and its X-ray diffraction studies. The structural characterization techniques are elemental analysis, conductivity measurements, magnetic measurements, electronic spectroscopy, H NMR spectroscopy, Infrared spectroscopy and X-ray crystallography.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two series of transition metal complexes of Schiff bases derived from quinoxaline-2-carboxaldehyde with semicarbazide (QSC) and furfurylamine (QFA) were synthesised and characterised by elemental analyses, molar conductance and magnetic susceptibility measurements, IR, electronic and EPR spectral studies. The QSC complexes have the general formula [M(QSC)Cl2]. A tetrahedral structure has been assigned for the Mn(II), Co(II) and Ni(II) complexes and a square-planar structure for the Cu(II) complex. The QFA complexes have the formula [M(QFA)2Cl2]. An octahedral structure has been assigned for these complexes. All of the complexes exhibit catalytic activity towards the oxidation of 3,5-di-tert-butylcatechol (DTBC) to 3,5-di-tert-butylquinone (DTBQ) using atmospheric oxygen. The cobalt(II) complex of the ligand QFA was found to be the most active catalyst.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The current work deals with the synthesis and characterization of metal complexes derived from some substituted acylhydrazones. The hydrazones under investigation were characterized by IR, UV, NMR spectral studies and the molecular structure of one of the hydrazones was solved by single crystal XRD studies. In the present work dioxovanadium(V), manganese(II), cobalt(II/III), nickel(II), copper(II), zinc(II) and cadmium(II) complexes were synthesized and characterized by various spectroscopic techniques, molar conductance measurements, magnetic susceptibility measurements and cyclic voltammetry. Single crystals of some of the complexes were isolated and characterized by single crystal X-ray diffraction.The thesis is divided into eight chapters. Chapter 1 gives an introduction on hydrazones, diversity in their chelating behavior and their application in various fields. This chapter also describes different analytical techniques employed for the characterization of hydrazones and their metal complexes. Chapter 2 includes the synthesis and characterization of two substituted acylhydrazones. This chapter also discusses how the coordination behavior of hydrazones under investigation is interesting. Chapters 3-8 discuss the synthesis and characterization of some transition metal complexes derived from the acylhydrazones under study.The hydrazones synthesized were found to exist in the amido form. Various characterization techniques were carried out to explore the structure of the synthesized complexes. The results indicate that both the hydrazones coordinate through the pyridyl and azomethine nitrogens and amide oxygen either in enolate or neutral form. Out of synthesized complexes V(V), Zn/Cd(II) and one of the cobalt complex was found to diamagnetic. We could isolate single crystals of some of the complexes and most of the complexes crystallized were found to have a distorted octahedral geometry. Thus X-ray crystallographic study which was used as major tool in the structure determination revealed that the hydrazones undergo a rotation about the azomethine bond on complexation. We hope the work presented in the thesis would be helpful for those who are working in the field of metal complexes and can further they can be utilized for various applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metallo-organic chemistry,incorporating the frontiers of both inorganic and organic chemical aspects,is a topic of utility concern.The first exploration of coordinated metal complexes dates back to the ninettenth century,during the days of Alfred Werner.Thereafter,inorganic chemistry witnessed a great outflow of coordination compounds,with unique structural characteristics and diverse applicatons.The diversity in structures exhibited by the coordination complexes of multidentate ligands have led to their usage as sensors,models for enzyme mimetic centers,medicines etc.The liganda chosen are of prime importance in determining the properties of coordination compounds.Schiff bases are compounds obtained by the condensation of an aidehyde or ketone with an amine.The chemical properties of Schiff bases and their complexes are widely explored in recent years owing to their pharmacological activity,their catalytic activities and so on.On the other hand pseudohalides like azide and thiocyanate are versatile candidates for the construction of dimeric or polymeric complexes having excellent properties and diverse applications.So a combination of the Schiff bases and the pseudohalogens for the synthesis of metal complexes can bring about interesting results.An attempt into this area is the besis of this Ph.D theis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work deals with the complexation of Schiff bases of aroylhydrazines with various transition metal ions. The hydrazone systems selected for study have long 7I:-delocalized chain in the ligand molecule itself, which get intensified due to metal-to-ligand or ligand-to-metal charge transfer excitations upon coordination. Complexation with metal ions like copper, nickel, cobalt, manganese, iron, zinc and cadmium are tried. Various spectral techniques are employed for characterization. The structures of some complexes have been well established by single crystal X-ray diffraction studies. The nonIinaer optical studies of the ligands and complexes synthesized have been studied by hyper-Rayleigh scattering technique.The work is presented in seven chapters and the last one deals with summary and conclusion. One of the hydrazone system selected for study proved that it could give rise to polymeric metal complexes. Some of the copper, nickel, zinc and cadmium complexes showed non-linear optical activity. The NLO studies of manganese and iron showed negative result, may be due to the inversion centre of symmetry within the molecular lattice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis is mainly concerned with the synthesis and characterisation of new simple and zeolite encapsulated transition metal (manganese(II),nickel(II),and copper(II)complexes of quinoxaline based double Schiff base ligands.Theses ligands are N,N'-bis(quinoxaline-2-carboxalidene)hydrazine,N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminoethane,N,N'-bis(quinoxaline-2-carboxalidene)-1,3-diamonopropane,N,N'-bis(quinoxaline-2-carboxalidene)-1,4-diaminobutane,N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminocyclohexane and N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminobenzene.The Schiff base ligands have been characterised by spectral and single crystal XRD studies.Theses ligands provide great structural diversity during complexation.Mn(II) and Ni(II) form octahedral with these Schiff bases,whereas Cu(II) forms both octahedral and tetrahedral complexes.Studies on the biological and Catalytic activity of the copper(ll) complexes are also presented in this thesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thesis is an introduction to evaluate the coordination behaviour of a few compounds of our interest. The crucial aim of these investigations was to synthesize and characterize some transition metal complexes using the ligands benzaldehyde, 2-hydroxybenzaldehyde and 4-methoxybenzaldehyde N(4)-ring incorporated thiosemicarbazones.The study involves a brief foreword of the metal complexes of thiosemicarbazones including their bonding, stereochemistry and biological activities.The different analytical and spectroscopic techniques used for the analysis of the ligands and their complexes are discussed.It also deals with the synthesis and spectral characterization of the thiosemicarbazones and single crystal X-ray diffraction study of one of them.Chapter 3 describes the synthesis, spectral characterization, single crystal X-ray diffraction studies of copper(ll) complexes with ONS/NS donor thiosemicarbazones. Chapter 4 deals with the synthesis, spectral characterization and single crystal X-ray diffraction studies of nickel(II) complexes. Chapter 5 contains the synthesis, structural and spectral characterization of the cobalt(III) complexes. Chapters 6 and 7 include the synthesis, structural and spectral characterization of zinc(II) and cadmium(ll) complexes with ONS/NS donor thiosemicarbazones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thiosemicarbazones have recently attracted considerable attention due to their ability to form tridentate chelates with transition metal ions through either two nitrogen and sulfur atoms, N–N–S or oxygen, nitrogen and sulfur atoms, O–N–S. Considerable interest in thiosemicarbazones and their transition metal complexes has also grown in the areas of biology and chemistry due to biological activities such as antitumoral, fungicidal, bactericidal, antiviral and nonlinear optical properties. They have been used for metal analyses, for device applications related to telecommunications, optical computing, storage and information processing.The versatile applications of metal complexes of thiosemicarbazones in various fields prompted us to synthesize the tridentate NNS-donor thiosemicarbazones and their metal complexes. As a part of our studies on transition metal complexes with these ligands, the researcher undertook the current work with the following objectives. 1. To synthesize and physico-chemically characterize the following thiosemicarbazone ligands: a. Di-2-pyridyl ketone-N(4)-methyl thiosemicarbazone (HDpyMeTsc) b. Di-2-pyridyl ketone-N(4)-ethyl thiosemicarbazone (HDpyETsc) 2. To synthesize oxovanadium(IV), manganese(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes using the synthesized thiosemicarbazones as principal ligands and some anionic coligands. 3. To study the coordination modes of the ligands in metal complexes by using different physicochemical methods like partial elemental analysis, thermogravimetry and by different spectroscopic techniques. 4. To establish the structure of compounds by single crystal XRD studies

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Semicarbazones and their transition metal complexes have been receiving considerable attention because of their biological relevance and applications in the field of analysis and in the field of organic NLO materials. Their structural diversity also attracted inorganic chemists. A good deal of work has been reported on the synthesis and structural investigation of semicarbazones and their complexes. This is due partially to their capability of acting as multidentate, NO, NNO, ONO and ONNO donors with the formation of either mono or bi or polynuclear complexes. Their chemistry and pharmacological applications have been extensively investigated. Appreciable biological applications as well as diverse stereochemistry of their metal complexes prompted us to synthesize two new tridentate ONO donor N4-phenyl semicarbazones derived from 2-hydroxy-4-methoxyacetophenone and 2-hydroxy-4-methoxybenzophenone and their transition metal complexes. These ketones were selected since they can provide a further binding site from phenolic–OH and can thus increase the denticity. Introduction of heterocyclic bases like 1,10-phenanthroline, 2,2′-bipyridine, 4,4′-dimethyl- 2,2′-bipyridine and 4-picoline and some pseudohalides like azide and thiocyanate ion can result in mixed ligand metal chelates with different geometries in coordination compounds In the present study, oxovanadium(IV), manganese(II), cobalt (II/III), nickel(II), copper(II) and zinc(II) complexes of 2-hydroxy-4- methoxyacetophenone-N4-phenylsemicarbazone (H2ASC) and 2-hydroxy-4- methoxybenzophenone-N4-phenylsemicarbazone (H2BSC) were synthesized and characterized.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis deals with the studies on the synthesis and characterisation of the complexes of embelin with manganese (II), cobalt(II), nickel (II), copper (II), zinc (II), cadmium (II), chromium (III), iron (III) lanthanum(III), praseodymium (III) neodymium (III) Samarium (III), gadolinium (III) dysprosium (III), yttrium (III) thorium (IV) and uranium (VI). Elemental analysis as well as spectral, thermal and magnetic data were used to ascertain the composition of the complexes and to establish the structures of the metal complexes. Wherever possible, the electronic spectra and magnetic data were used to predict the stereochemistry of the complexes.The thesis is divided into four chapters.