4 resultados para network identification
em Cochin University of Science
Resumo:
Artificial neural networks (ANNs) are relatively new computational tools that have found extensive utilization in solving many complex real-world problems. This paper describes how an ANN can be used to identify the spectral lines of elements. The spectral lines of Cadmium (Cd), Calcium (Ca), Iron (Fe), Lithium (Li), Mercury (Hg), Potassium (K) and Strontium (Sr) in the visible range are chosen for the investigation. One of the unique features of this technique is that it uses the whole spectrum in the visible range instead of individual spectral lines. The spectrum of a sample taken with a spectrometer contains both original peaks and spurious peaks. It is a tedious task to identify these peaks to determine the elements present in the sample. ANNs capability of retrieving original data from noisy spectrum is also explored in this paper. The importance of the need of sufficient data for training ANNs to get accurate results is also emphasized. Two networks are examined: one trained in all spectral lines and other with the persistent lines only. The network trained in all spectral lines is found to be superior in analyzing the spectrum even in a noisy environment.
Resumo:
Identification and Control of Non‐linear dynamical systems are challenging problems to the control engineers.The topic is equally relevant in communication,weather prediction ,bio medical systems and even in social systems,where nonlinearity is an integral part of the system behavior.Most of the real world systems are nonlinear in nature and wide applications are there for nonlinear system identification/modeling.The basic approach in analyzing the nonlinear systems is to build a model from known behavior manifest in the form of system output.The problem of modeling boils down to computing a suitably parameterized model,representing the process.The parameters of the model are adjusted to optimize a performanace function,based on error between the given process output and identified process/model output.While the linear system identification is well established with many classical approaches,most of those methods cannot be directly applied for nonlinear system identification.The problem becomes more complex if the system is completely unknown but only the output time series is available.Blind recognition problem is the direct consequence of such a situation.The thesis concentrates on such problems.Capability of Artificial Neural Networks to approximate many nonlinear input-output maps makes it predominantly suitable for building a function for the identification of nonlinear systems,where only the time series is available.The literature is rich with a variety of algorithms to train the Neural Network model.A comprehensive study of the computation of the model parameters,using the different algorithms and the comparison among them to choose the best technique is still a demanding requirement from practical system designers,which is not available in a concise form in the literature.The thesis is thus an attempt to develop and evaluate some of the well known algorithms and propose some new techniques,in the context of Blind recognition of nonlinear systems.It also attempts to establish the relative merits and demerits of the different approaches.comprehensiveness is achieved in utilizing the benefits of well known evaluation techniques from statistics. The study concludes by providing the results of implementation of the currently available and modified versions and newly introduced techniques for nonlinear blind system modeling followed by a comparison of their performance.It is expected that,such comprehensive study and the comparison process can be of great relevance in many fields including chemical,electrical,biological,financial and weather data analysis.Further the results reported would be of immense help for practical system designers and analysts in selecting the most appropriate method based on the goodness of the model for the particular context.
Resumo:
Microarray data analysis is one of data mining tool which is used to extract meaningful information hidden in biological data. One of the major focuses on microarray data analysis is the reconstruction of gene regulatory network that may be used to provide a broader understanding on the functioning of complex cellular systems. Since cancer is a genetic disease arising from the abnormal gene function, the identification of cancerous genes and the regulatory pathways they control will provide a better platform for understanding the tumor formation and development. The major focus of this thesis is to understand the regulation of genes responsible for the development of cancer, particularly colorectal cancer by analyzing the microarray expression data. In this thesis, four computational algorithms namely fuzzy logic algorithm, modified genetic algorithm, dynamic neural fuzzy network and Takagi Sugeno Kang-type recurrent neural fuzzy network are used to extract cancer specific gene regulatory network from plasma RNA dataset of colorectal cancer patients. Plasma RNA is highly attractive for cancer analysis since it requires a collection of small amount of blood and it can be obtained at any time in repetitive fashion allowing the analysis of disease progression and treatment response.
Resumo:
MicroRNAs are short non-coding RNAs that can regulate gene expression during various crucial cell processes such as differentiation, proliferation and apoptosis. Changes in expression profiles of miRNA play an important role in the development of many cancers, including CRC. Therefore, the identification of cancer related miRNAs and their target genes are important for cancer biology research. In this paper, we applied TSK-type recurrent neural fuzzy network (TRNFN) to infer miRNA–mRNA association network from paired miRNA, mRNA expression profiles of CRC patients. We demonstrated that the method we proposed achieved good performance in recovering known experimentally verified miRNA–mRNA associations. Moreover, our approach proved successful in identifying 17 validated cancer miRNAs which are directly involved in the CRC related pathways. Targeting such miRNAs may help not only to prevent the recurrence of disease but also to control the growth of advanced metastatic tumors. Our regulatory modules provide valuable insights into the pathogenesis of cancer