4 resultados para nature reserve pattern
em Cochin University of Science
Resumo:
The study has wider policy implications as it identifies the possible variables which influence the sustainability of participatory productive sector projects. The method which is developed to study the sustainability of projects under People’s Planning in Chempu Panchayat could be used for studying the same in other panchayats also. Unlike the case of the standard features of sustainability identified, the independent variables vary according to the nature of the project. Hence, this needs to be modified accordingly while applying the method in a dissimilar domain. Selection of a single panchayat for the present study is relevant on the basis of a common package of inputs for decentralised planning which is forwarded by the State Planning Board respectively for the three-tier panchayat system in Kerala. The dynamic filed realities could be brought out in view of a comprehensive planning approach through an in depth study of specific cases.The assessment of the nature and pattern of productive sector projects in the selected Village Panchayat puts the projects under close scrutiny. The analysis has depended largely on secondary sources of information, especially from panchayat level plan documents, and also on the primary information obtained using direct observation and on-site inspection of project sites. An analysis of the nature and pattem of productive sector projects is important as it gives all necessary information regarding follow-up, monitoring/evaluation and even termination of a particular project. It has also revealed the tendencies of including infrastructure and service sector projects under ‘productive’ category, especially for maintaining the stipulated ratio (40:30:30) of grant-in-aid distribution. The study regarding the allocation and expenditure pattern of plan funds is vital in policy level as it reveals the under-noticed allocation and expenditure pattern of plan funds other than grant-in-aid. One major limitation of the study has been the limited availability of secondary data, especially regarding project-wise expenditure and monitoring/evaluation reports of various project committees.
Resumo:
The present study is an attempt to address issues related to sediment properties like texture, mineralogy and geochemistry as well as water quality of two important rivers of central Kerala-the Periyar and the Chalakudy rivers. The main objectives of the study are to investigate the textural and mineralogical characteristics as well as transportation and depositional mechanisms of the sediments of Periyar and Chalakudy rivers, to find out the geochemical variability of organic carbon, phosphorus and certain major (Na,K,Ca and Mg) and minor/trace(Mn,Pb,Ni,Cr, and Zn) elements in the bulk sediments and mud fraction of these rivers, to evaluate the status of heavy metal pollution registered in the sediments of these rivers, to assess the physico-chemical characteristics and water quality of Periyar and Chalakudy rivers and to estimate the dissolved nutrient flux through the Periyar and Chalakudy rivers into the receiving coastal waters. The granulometric characteristics as well as statistical parameters of the sediments of Periyar and Chalakudy rivers depend on the flow pattern controlled by the gradient of the terrain. Compared to Periyar, fluctuations in the dispersal of particles are more in Chalakudy river. In Periyar river, the P and Fe in bulk sediments show a positive correlation with C-org, while in Chalakudy river, both the elements are related to THM concentration. In general, C-org, Fe and P Shows an increasing trend downstream. In Periyar river, the P and Fe in bulk sediments show a positive correlation with C-org, while in Chalakudy river, both the elements are related to THM concentration. Among these two rivers, the pollution of water is several fold higher in Periyar river due to influx due to influx of considerable quantity of liquid and solid wastes of industrial/domestic/urban origin. Nutrient analysis reveals 2-3 times increase in N and P during monsoon season whereas SiO2-Si shows a decreasing trend.
Resumo:
Speckle noise formed as a result of the coherent nature of ultrasound imaging affects the lesion detectability. We have proposed a new weighted linear filtering approach using Local Binary Patterns (LBP) for reducing the speckle noise in ultrasound images. The new filter achieves good results in reducing the noise without affecting the image content. The performance of the proposed filter has been compared with some of the commonly used denoising filters. The proposed filter outperforms the existing filters in terms of quantitative analysis and in edge preservation. The experimental analysis is done using various ultrasound images
Resumo:
Sediments are the reserve of environmental variation and analysis gives the diverse nature of the environmental chemical pattern. Present attempt provides an insight on the biogeochemistry (BGC) of sediment in selected stations of Kerala coast, India. Sampling along the Kerala coast was done during May – June 2009 in cruise no: 267 of Fishery and Oceanographic Research Vessel, Sagar Sampada. Eleven samples were collected from four stations - Cape, Trivandrum, Kollam and Cochin. Study of organic matter (OM) is significant as it exerts a strong control on the diagenic alterations in the sediment. Samples were analyzed for their Texture; OM- Protein, Carbohydrate, Tannin and lignin, Lipid; Trace metal; Total phosphorus and CHN. Among the eleven analyzed sediment, sample from Cochin station has high clay (>30%) and silt (>40%) content. The rest of the stations showed elevated amount of sand content. Generally the investigation reveals an inverse relation between lipid with other OM- Protein, Carbohydrate, Tannin and lignin. The order of relative distribution of OM were Protein > Carbohydrate > Tannin and Lignin > Lipid. High concentration of trace metal, Fe was found at Kollam and Cochin. Trace metal concentration was directly related to OM distribution. But C/N and Fe/P ratios were inversely related to OM and trace metal.