7 resultados para mushrooms

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work is focussed mainly on the utilization of this weed-biomass on a biochemical and biotechnological basis. Before designing scientific and systematic utilization of any given biomass, the detailed analysis of its chemical componets is essential. Hence, as the preliminary part of the experimental works, samples of Salvinia were analysed for its chemical constituents.Before designing scientific and systematic utilization of any given biomass, the detailed analysis of its chemical componets is essential .The composition of the substrate contributes much to the nutritive value of mushrooms. Hence, alterations in the nutritive value of mushrooms (in terms of total carbohydrates, proteins, lipids and minerals) in response to Salvinia as substrate were analyzed.Substrate after mushroom harvest (spent substrate) can be utilized for various purposes such as cattle feed, as a source of degradative enzymes, as a substrate for other mushrooms and as garden manure. But studies are limited with regard to the utilization of Pleurotus spent substrate as garden manure. So the value of spent substrate as an organic supplement and its multidimensional impacts on soil chemical status, soil microbial population dynamics and plant growth (Amhurium andreanum) were carried out.Major findings of this work have got much relevance in designing measures to utilize different types of plant biomass, especially aquatic weeds, with the aid of a powerful biological tool, the lignocellulolytic fungus, Pleurorus

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protease inhibitors are found abundantly in numerous plants, animals and microorganisms, owing their significance to their application in the study of enzyme structures, reaction mechanisms and also their utilization in pharmacology and agriculture. They are (synthetic/natural) substances that act directly on proteases to lower the catalytic rate. Although most of these inhibitory proteins are directed against serine proteases, some target cysteine, aspartyl or metalloproteases (Bode and Huber, 1992). Protease inhibitors are essential for regulating the activity of their corresponding proteases and play key regulatory roles in many biological processes. Applications of protease inhibitors are intimately connected to the proteases they inhibit; an overview of proteases with the modes of regulation of their proteolytic activity is discussed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protease inhibitors can be versatile tools mainly in the fields of medicine, agriculture and food preservative applications. Fungi have been recognized as sources of protease inhibitors, although there are only few such reports on mushrooms. This work reports the purification and characterization of a trypsin inhibitor from the fruiting body of edible mushroom Pleurotus floridanus (PfTI) and its effect on the activity of microbial proteases. The protease inhibitor was purified up to 35-fold by DEAE-Sepharose ion exchange column, trypsin-Sepharose column and Sephadex G100 column. The isoelectric point of the inhibitor was 4.4, and its molecular mass was calculated as 37 kDa by SDS-PAGE and 38.3 kDa by MALDI-TOF. Inhibitory activity confirmation was by dot-blot analysis and zymographic activity staining. The specificity of the inhibitor toward trypsin was with Ki of 1.043×10−10 M. The inhibitor was thermostable up to 90 °C with maximal stability at 30 °C, active over a pH range of 4–10 against proteases from Aspergillus oryzae, Bacillus licheniformis, Bacillus sp. and Bacillus amyloliquefaciens. Results indicate the possibility of utilization of protease inhibitor from P. floridanus against serine proteases

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biopulping being less energy intensive, inexpensive and causing lesser pollution, can be a viable alternative to chemical and mechanical pulping in paper and pulp industry. In view of shrinking forest reserves, agricultural residues are considered as an alternative raw material for making paper and board. By suitable treatment agriwaste can be converted into substrate for mushroom cultivation. Mushrooms of Pleurotus sp. can preferentially remove lignin from agriwaste with limited degradation to cellulose. The present study examines utilization of Pleurotus eous for biopulping of paddy straw by solid substrate fermentation. SMS, the mushroom growing medium that results from cultivation process, is a good source of fibre and can be pulped easily. Ligninases present in SMS were able to reduce lignin content to nearly half the initial amount by 21st day of cultivation. Highest cellulose content (% dry weight) was observed on 21st day, while cellulase production commenced from 28th day of cultivation. SEM images revealed that SMS fibres are still associated with non-cellulosic materials when compared to chemically (20% w/v NaOH) extracted fibres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spent substrate, the residual material of mushroom cultivation, causes disposal problems for cultivators. Currently the spent substrate of different mushrooms is used mainly for composting. Edible mushrooms of Pleurotus sp. can grow on a wide range of lignocellulosic substrates. In the present study, Pleurotus eous was grown on paddy straw and the spent substrate was used for the production of ethanol. Lignocellulosic biomass cannot be saccharified by enzymes to high yield of ethanol without pretreatment. The root cause for the recalcitrance of lignocellulosic biomass such as paddy straw is the presence of lignin and hemicelluloses on the surface of cellulose. They form a barrier and prevent cellulase from accessing the cellulose in the substrate. In the untreated paddy straw, the amount of hemicelluloses and lignin (in % dry weight) were 20.30 and 20.34 respectively and the total reducing sugar was estimated to be 5.40 mg/g. Extracellular xylanase and ligninases of P. eous could reduce the amount of hemicelluloses and lignin to 16 and 11(% dry weight) respectively, by 21st day of cultivation. Growth of mushroom brought a seven fold increase in the total reducing sugar yield (39.20 mg/g) and six fold increase in the production of ethanol (6.48 g/L) after 48hrs of fermentation, when compared to untreated paddy straw

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioethanol is a liquid fuel obtained from fermentation of sugar/starch crops. Lignocellulosic biomass being less expensive is considered a future alternative for the food crops. One of the main challenges for the use of lignocellulosics is the development of an efficient pre-treatment process. Pretreatments are classified into three - physical, chemical, and biological pretreatment. Chemical process has not been proven suitable so far, due to high costs and production of undesired by-products. Biologically, hydrolysis can be enhanced by microbial or enzymatic pretreatment. Studies show that the edible mushrooms of Pleurotus sp. produce several extracellular enzymes which reduce the structural and chemical complexity of fibre. In the present study, P. ostreatus and P. eous were cultivated on paddy straw. Spent substrate left after mushroom cultivation was powdered and used for ethanol production. Saccharomyces sp. was used for fermentation studies. Untreated paddy straw was used as control. Production of ethanol from P. ostreatus substrate was 5.5 times more when compared to untreated paddy straw, while the spent substrate of P. eous gave 5 times increase in ethanol yield. Assays showed the presence of several extracellular enzymes in the spent substrate of both species, which together contributed to the increase in ethanol yield

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phenol is an aromatic hydrocarbon which exists as a colorless or white solid in its pure state. Over the past several decades, there is growing concern about wide spread contamination of surface and ground water by phenol, due to rapid development of chemical and petrochemical industries. Phenol affects aquatic life even at relatively low concentration (5-25mg/L). Treatment for removal of phenol includes chemical as well as biological processes. Studies show that ligninases such as Lignin Peroxidase and Laccase, produced by Pleurotus sp., can degrade phenol. Spent substrate of Pleurotus mushrooms consists of ligninases. Present work was to investigate the potential of spent substrate of edible mushroom P. ostreatus for biodegradation of phenol. P. ostreatus was cultivated on paddy straw. After harvest, spent substrate was utilized for phenol degradation. According to the enzyme profile of two ligninases present in the spent substrate of P. ostreatus, maximum specific activity for Laccase was observed in 35 day old spent substrate and LiP activity was maximum in 56 day old spent substrate, which together contributed significantly for removal of phenol. Spent substrate of 35th and 56th day were each incubated with phenol sample (1:1w/v) for one day, which resulted in degradation of phenol by 48% and 45% respectively. From these results it appears that, spent substrate of P. ostreatus can be used effectively to remove phenol from industrial effluents