4 resultados para musculoskeletal loading
em Cochin University of Science
Resumo:
Isora fibre-reinforced natural rubber (NR) composites were cured at 80, 100, 120 and 150°C using a low temperature curing accelerator system. Composites were also prepared using a conventional accelerator system and cured at 150°C. The swelling behavior of these composites at varying fibre loadings was studied in toluene and hexane. Results show that the uptake of solvent and volume fraction of rubber due to swelling was lower for the low temperature cured vulcanizates which is an indication of the better fibre/rubber adhesion. The uptake of aromatic solvent was higher than that of aliphatic solvent, for all the composites. As the fibre content increased, the solvent uptake decreased, due to the superior solvent resistance of the fibre and good fibre-rubber interactions. The bonding agent improved the swelling resistance of the composites due to the strong interfacial adhesion. Due to the improved adhesion between the fibre and rubber, the ratio of the change in volume fraction of rubber due to swelling to the volume fraction of rubber in the dry sample (V,) was found to decrease in the presence of bonding agent. At a fixed fibre loading, the alkali treated fibre composite showed a lower percentage swelling than untreated one for both systems showing superior rubber-fibre interactions.
Resumo:
A series of short-isora-fiber-reinforced natural rubber composites were prepared by the incorporation of fibers of different lengths (6, 10, and 14 mm) at 15 phr loading and at different concentrations (10, 20, 30, and 40 phr) with a 10 mm fiber length. Mixes were also prepared with 10 mm long fibers treated with a 5% NaOH solution. The vulcanization parameters, processability, and stress-strain properties of these composites were analyzed. Properties such as tensile strength, tear strength, and tensile modulus were found to be at maximum for composites containing longitudinally oriented fibers 10 mm in length. Mixes containing fiber loadings of 30 phr with bonding agent (resorcinol-formaldehyde [RF] resin) showed mechanical properties superior to all other composites. Scanning electron microscopy (SEM) studies were carried out to investigate the fiber surface morphology, fiber pullout, and fiber-rubber interface. SEM studies showed that the bonding between the fiber and rubber was improved with treated fibers and with the use of bonding agent.
Resumo:
Composite magnetic materials have the unique advantage of property modification for tailoring devices for various applications. Rubber ferrite composites (RFCs) prepared by incorporating ferrites in rubber matrixes have the advantage of easy mouldability and flexibility. RFCs containing various loadings of nickel zinc ferrite (NZF) (Ni1 xZnxFe2O4) in a natural rubber matrix have been prepared. The cure characteristics and the mechanical properties of these composites were evaluated. The effect of loading on the cure characteristics and tensile properties were also evaluated. It is found that the loading dependence on the cure time and mechanical properties exhibit an identical pattern.
Resumo:
In this modern complex world, stress at work is found to be increasingly a common feature in day to day life. For the same reason, job stress is one of the active areas in occupational health and safety research for over last four decades and is continuing to attract researchers in academia and industry. Job stress in process industries is of concern due to its influence on process safety, and worker‘s safety and health. Safety in process (chemical and nuclear material) industry is of paramount importance, especially in a thickly populated country like India. Stress at job is the main vector in inducing work related musculoskeletal disorders which in turn can affect the worker health and safety in process industries. In view of the above, the process industries should try to minimize the job stress in workers to ensure a safe and healthy working climate for the industry and the worker. This research is mainly aimed at assessing the influence of job stress in inducing work related musculoskeletal disorders in chemical process industries in India