2 resultados para multiplexed
em Cochin University of Science
Resumo:
Coded OFDM is a transmission technique that is used in many practical communication systems. In a coded OFDM system, source data are coded, interleaved and multiplexed for transmission over many frequency sub-channels. In a conventional coded OFDM system, the transmission power of each subcarrier is the same regardless of the channel condition. However, some subcarrier can suffer deep fading with multi-paths and the power allocated to the faded subcarrier is likely to be wasted. In this paper, we compute the FER and BER bounds of a coded OFDM system given as convex functions for a given channel coder, inter-leaver and channel response. The power optimization is shown to be a convex optimization problem that can be solved numerically with great efficiency. With the proposed power optimization scheme, near-optimum power allocation for a given coded OFDM system and channel response to minimize FER or BER under a constant transmission power constraint is obtained
Resumo:
The towed array electronics is essentially a multichannel real time data acquisition system. The major challenges involved in it are the simultaneous acquisition of data from multiple channels, telemetry of the data over tow cable (several kilometres in some systems) and synchronization with the onboard receiver for accurate reconstruction. A serial protocol is best suited to transmit the data to onboard electronics since number of wires inside the tow cable is limited. The best transmission medium for data over large distances is the optical fibre. In this a two step approach towards the realization of a reliable telemetry scheme for the sensor data using standard protocols is described. The two schemes are discussed in this paper. The first scheme is for conversion of parallel, time-multiplexed multi-sensor data to Ethernet. Existing towed arrays can be upgraded to ethernet using this scheme. Here the last lap of the transmission is by Ethernet over Fibre. For the next generation of towed arrays it is required to digitize and convert the data to ethernet close to the sensor. This is the second scheme. At the heart of this design is the Analog-to-Ethernet node. In addition to a more reliable interface, this helps in easier fault detection and firmware updates in the field for the towed arrays. The design challenges and considerations for incorporating a network of embedded devices within the array are highlighted