3 resultados para multiple quantum wells
em Cochin University of Science
Resumo:
This thesis presents analytical and numerical results from studies based on the multiple quantum well laser rate equation model. We address the problem of controlling chaos produced by direct modulation of laser diodes. We consider the delay feedback control methods for this purpose and study their performance using numerical simulation. Besides the control of chaos, control of other nonlinear effects such as quasiperiodicity and bistability using delay feedback methods are also investigated.A number of secure communication schemes based on synchronization of chaos semiconductor lasers have been successfully demonstrated theoretically and experimentally. The current investigations in these field include the study of practical issues on the implementations of such encryption schemes. We theoretically study the issues such as channel delay, phase mismatch and frequency detuning on the synchronization of chaos in directly modulated laser diodes. It would be helpful for designing and implementing chaotic encryption schemes using synchronization of chaos in modulated semiconductor lasers.
Resumo:
Transparent conducting oxides (TCO’s) have been known and used for technologically important applications for more than 50 years. The oxide materials such as In2O3, SnO2 and impurity doped SnO2: Sb, SnO2: F and In2O3: Sn (indium tin oxide) were primarily used as TCO’s. Indium based oxides had been widely used as TCO’s for the past few decades. But the current increase in the cost of indium and scarcity of this material created the difficulty in obtaining low cost TCO’s. Hence the search for alternative TCO material has been a topic of active research for the last few decades. This resulted in the development of various binary and ternary compounds. But the advantages of using binary oxides are the easiness to control the composition and deposition parameters. ZnO has been identified as the one of the promising candidate for transparent electronic applications owing to its exciting optoelectronic properties. Some optoelectronics applications of ZnO overlap with that of GaN, another wide band gap semiconductor which is widely used for the production of green, blue-violet and white light emitting devices. However ZnO has some advantages over GaN among which are the availability of fairly high quality ZnO bulk single crystals and large excitonic binding energy. ZnO also has much simpler crystal-growth technology, resulting in a potentially lower cost for ZnO based devices. Most of the TCO’s are n-type semiconductors and are utilized as transparent electrodes in variety of commercial applications such as photovoltaics, electrochromic windows, flat panel displays. TCO’s provide a great potential for realizing diverse range of active functions, novel functions can be integrated into the materials according to the requirement. However the application of TCO’s has been restricted to transparent electrodes, ii notwithstanding the fact that TCO’s are n-type semiconductors. The basic reason is the lack of p-type TCO, many of the active functions in semiconductor originate from the nature of pn-junction. In 1997, H. Kawazoe et al reported the CuAlO2 as the first p-type TCO along with the chemical design concept for the exploration of other p-type TCO’s. This has led to the fabrication of all transparent diode and transistors. Fabrication of nanostructures of TCO has been a focus of an ever-increasing number of researchers world wide, mainly due to their unique optical and electronic properties which makes them ideal for a wide spectrum of applications ranging from flexible displays, quantum well lasers to in vivo biological imaging and therapeutic agents. ZnO is a highly multifunctional material system with highly promising application potential for UV light emitting diodes, diode lasers, sensors, etc. ZnO nanocrystals and nanorods doped with transition metal impurities have also attracted great interest, recently, for their spin-electronic applications This thesis summarizes the results on the growth and characterization of ZnO based diodes and nanostructures by pulsed laser ablation. Various ZnO based heterojunction diodes have been fabricated using pulsed laser deposition (PLD) and their electrical characteristics were interpreted using existing models. Pulsed laser ablation has been employed to fabricate ZnO quantum dots, ZnO nanorods and ZnMgO/ZnO multiple quantum well structures with the aim of studying the luminescent properties.
Resumo:
In this article we present size dependent spectroscopic observations of nanocolloids of ZnO. ZnO is reported to show two emission bands, an ultraviolet (UV) emission band and another in the green region. Apart from the known band gap 380 nm and impurity 530 nm emissions, we have found some peculiar features in the fluorescence spectra that are consistent with the nanoparticle size distribution. Results show that additional emissions at 420 and 490 nm are developed with particle size. The origin of the visible band emission is discussed. The mechanism of the luminescence suggests that UV luminescence of ZnO colloid is related to the transition from conduction band edge to valence band, and visible luminescence is caused by the transition from deep donor level to valence band due to oxygen vacancies and by the transition from conduction band to deep acceptor level due to impurities and defect states. A correlation analysis between the particle size and spectroscopic observations is also discussed.