5 resultados para model identification
em Cochin University of Science
Resumo:
The thesis has covered various aspects of modeling and analysis of finite mean time series with symmetric stable distributed innovations. Time series analysis based on Box and Jenkins methods are the most popular approaches where the models are linear and errors are Gaussian. We highlighted the limitations of classical time series analysis tools and explored some generalized tools and organized the approach parallel to the classical set up. In the present thesis we mainly studied the estimation and prediction of signal plus noise model. Here we assumed the signal and noise follow some models with symmetric stable innovations.We start the thesis with some motivating examples and application areas of alpha stable time series models. Classical time series analysis and corresponding theories based on finite variance models are extensively discussed in second chapter. We also surveyed the existing theories and methods correspond to infinite variance models in the same chapter. We present a linear filtering method for computing the filter weights assigned to the observation for estimating unobserved signal under general noisy environment in third chapter. Here we consider both the signal and the noise as stationary processes with infinite variance innovations. We derived semi infinite, double infinite and asymmetric signal extraction filters based on minimum dispersion criteria. Finite length filters based on Kalman-Levy filters are developed and identified the pattern of the filter weights. Simulation studies show that the proposed methods are competent enough in signal extraction for processes with infinite variance.Parameter estimation of autoregressive signals observed in a symmetric stable noise environment is discussed in fourth chapter. Here we used higher order Yule-Walker type estimation using auto-covariation function and exemplify the methods by simulation and application to Sea surface temperature data. We increased the number of Yule-Walker equations and proposed a ordinary least square estimate to the autoregressive parameters. Singularity problem of the auto-covariation matrix is addressed and derived a modified version of the Generalized Yule-Walker method using singular value decomposition.In fifth chapter of the thesis we introduced partial covariation function as a tool for stable time series analysis where covariance or partial covariance is ill defined. Asymptotic results of the partial auto-covariation is studied and its application in model identification of stable auto-regressive models are discussed. We generalize the Durbin-Levinson algorithm to include infinite variance models in terms of partial auto-covariation function and introduce a new information criteria for consistent order estimation of stable autoregressive model.In chapter six we explore the application of the techniques discussed in the previous chapter in signal processing. Frequency estimation of sinusoidal signal observed in symmetric stable noisy environment is discussed in this context. Here we introduced a parametric spectrum analysis and frequency estimate using power transfer function. Estimate of the power transfer function is obtained using the modified generalized Yule-Walker approach. Another important problem in statistical signal processing is to identify the number of sinusoidal components in an observed signal. We used a modified version of the proposed information criteria for this purpose.
Resumo:
Identification and Control of Non‐linear dynamical systems are challenging problems to the control engineers.The topic is equally relevant in communication,weather prediction ,bio medical systems and even in social systems,where nonlinearity is an integral part of the system behavior.Most of the real world systems are nonlinear in nature and wide applications are there for nonlinear system identification/modeling.The basic approach in analyzing the nonlinear systems is to build a model from known behavior manifest in the form of system output.The problem of modeling boils down to computing a suitably parameterized model,representing the process.The parameters of the model are adjusted to optimize a performanace function,based on error between the given process output and identified process/model output.While the linear system identification is well established with many classical approaches,most of those methods cannot be directly applied for nonlinear system identification.The problem becomes more complex if the system is completely unknown but only the output time series is available.Blind recognition problem is the direct consequence of such a situation.The thesis concentrates on such problems.Capability of Artificial Neural Networks to approximate many nonlinear input-output maps makes it predominantly suitable for building a function for the identification of nonlinear systems,where only the time series is available.The literature is rich with a variety of algorithms to train the Neural Network model.A comprehensive study of the computation of the model parameters,using the different algorithms and the comparison among them to choose the best technique is still a demanding requirement from practical system designers,which is not available in a concise form in the literature.The thesis is thus an attempt to develop and evaluate some of the well known algorithms and propose some new techniques,in the context of Blind recognition of nonlinear systems.It also attempts to establish the relative merits and demerits of the different approaches.comprehensiveness is achieved in utilizing the benefits of well known evaluation techniques from statistics. The study concludes by providing the results of implementation of the currently available and modified versions and newly introduced techniques for nonlinear blind system modeling followed by a comparison of their performance.It is expected that,such comprehensive study and the comparison process can be of great relevance in many fields including chemical,electrical,biological,financial and weather data analysis.Further the results reported would be of immense help for practical system designers and analysts in selecting the most appropriate method based on the goodness of the model for the particular context.
Resumo:
Motivation for Speaker recognition work is presented in the first part of the thesis. An exhaustive survey of past work in this field is also presented. A low cost system not including complex computation has been chosen for implementation. Towards achieving this a PC based system is designed and developed. A front end analog to digital convertor (12 bit) is built and interfaced to a PC. Software to control the ADC and to perform various analytical functions including feature vector evaluation is developed. It is shown that a fixed set of phrases incorporating evenly balanced phonemes is aptly suited for the speaker recognition work at hand. A set of phrases are chosen for recognition. Two new methods are adopted for the feature evaluation. Some new measurements involving a symmetry check method for pitch period detection and ACE‘ are used as featured. Arguments are provided to show the need for a new model for speech production. Starting from heuristic, a knowledge based (KB) speech production model is presented. In this model, a KB provides impulses to a voice producing mechanism and constant correction is applied via a feedback path. It is this correction that differs from speaker to speaker. Methods of defining measurable parameters for use as features are described. Algorithms for speaker recognition are developed and implemented. Two methods are presented. The first is based on the model postulated. Here the entropy on the utterance of a phoneme is evaluated. The transitions of voiced regions are used as speaker dependent features. The second method presented uses features found in other works, but evaluated differently. A knock—out scheme is used to provide the weightage values for the selection of features. Results of implementation are presented which show on an average of 80% recognition. It is also shown that if there are long gaps between sessions, the performance deteriorates and is speaker dependent. Cross recognition percentages are also presented and this in the worst case rises to 30% while the best case is 0%. Suggestions for further work are given in the concluding chapter.
Resumo:
Globalization and liberalization, with the entry of many prominent foreign manufacturers, changed the automobile scenario in India, since early 1990‟s. Manufacturers such as Ford, General Motors, Honda, Toyota, Suzuki, Hyundai, Renault, Mitsubishi, Benz, BMW, Volkswagen and Nissan set up their manufacturing units in India in joint venture with their Indian counterpart companies, by making use of the Foreign Direct Investment policy of the Government of India, These manufacturers started capturing the hearts of Indian car customers with their choice of technological and innovative product features, with quality and reliability. With the multiplicity of choices available to the Indian passenger car buyers, it drastically changed the way the car purchase scenario in India and particularly in the State of Kerala. This transformed the automobile scene from a sellers‟ market to buyers‟ market. Car customers started developing their own personal preferences and purchasing patterns, which were hitherto unknown in the Indian automobile segment. The main purpose of this paper is to come up with the identification of possible parameters and a framework development, that influence the consumer purchase behaviour patterns of passenger car owners in the State of Kerala, so that further research could be done, based on the framework and the identified parameters
Resumo:
Automobile Industry in India is influenced by the presence of national and multi-national manufacturers. The presence of many manufacturers and brands in the state provides many choices to the customer. The current market for car manufacturers has been transformed from a monopoly of one or two manufacturers in the seventies to oligopoly of many manufacturers in the current marketing scenario. The main objective of the research paper is to explore and conceptualize various parameters and develop a model, which influence the purchase patterns of passenger cars in the State of Kerala. Thus, the main purpose of this paper is to come up with a model, which shall facilitate further study on the consumer purchase behaviour patterns of passenger car owners in the State of Kerala, India. The author intends to undertake further quantitative analysis to verify and validate the model so developed. The main methods used for this paper are secondary research on available material, depth interview of car dealers, car financing agencies and car owners in the city of Cochin, in Kerala State in India. The depth interviews were conducted with the use of prepared questionnaire for car dealers, car customers and car financing agencies. The findings resulted in the identification of the parameters that influence the consumer purchase behaviour of passenger cars and the formulation of the model, which will be the basis for the further research of the author. The paper will be of tremendous value to the existing and new car manufacturers both indigenous and foreign, to formalize and strategies their policies towards an effective marketing strategy, so as to market their models in the State, which is known for its high literacy, consumerism and higher educational penetration