6 resultados para model efficiency
em Cochin University of Science
Resumo:
In the present scenario of energy demand overtaking energy supply top priority is given for energy conservation programs and policies. Most of the process plants are operated on continuous basis and consumes large quantities of energy. Efficient management of process system can lead to energy savings, improved process efficiency, lesser operating and maintenance cost, and greater environmental safety. Reliability and maintainability of the system are usually considered at the design stage and is dependent on the system configuration. However, with the growing need for energy conservation, most of the existing process systems are either modified or are in a state of modification with a view for improving energy efficiency. Often these modifications result in a change in system configuration there by affecting the system reliability. It is important that system modifications for improving energy efficiency should not be at the cost of reliability. Any new proposal for improving the energy efficiency of the process or equipments should prove itself to be economically feasible for gaining acceptance for implementation. In order to arrive at the economic feasibility of the new proposal, the general trend is to compare the benefits that can be derived over the lifetime as well as the operating and maintenance costs with the investment to be made. Quite often it happens that the reliability aspects (or loss due to unavailability) are not taken into consideration. Plant availability is a critical factor for the economic performance evaluation of any process plant.The focus of the present work is to study the effect of system modification for improving energy efficiency on system reliability. A generalized model for the valuation of process system incorporating reliability is developed, which is used as a tool for the analysis. It can provide an awareness of the potential performance improvements of the process system and can be used to arrive at the change in process system value resulting from system modification. The model also arrives at the pay back of the modified system by taking reliability aspects also into consideration. It is also used to study the effect of various operating parameters on system value. The concept of breakeven availability is introduced and an algorithm for allocation of component reliabilities of the modified process system based on the breakeven system availability is also developed. The model was applied to various industrial situations.
Resumo:
This thesis presents the methodology of linking Total Productive Maintenance (TPM) and Quality Function Deployment (QFD). The Synergic power ofTPM and QFD led to the formation of a new maintenance model named Maintenance Quality Function Deployment (MQFD). This model was found so powerful that, it could overcome the drawbacks of TPM, by taking care of customer voices. Those voices of customers are used to develop the house of quality. The outputs of house of quality, which are in the form of technical languages, are submitted to the top management for making strategic decisions. The technical languages, which are concerned with enhancing maintenance quality, are strategically directed by the top management towards their adoption of eight TPM pillars. The TPM characteristics developed through the development of eight pillars are fed into the production system, where their implementation is focused towards increasing the values of the maintenance quality parameters, namely overall equipment efficiency (GEE), mean time between failures (MTBF), mean time to repair (MTIR), performance quality, availability and mean down time (MDT). The outputs from production system are required to be reflected in the form of business values namely improved maintenance quality, increased profit, upgraded core competence, and enhanced goodwill. A unique feature of the MQFD model is that it is not necessary to change or dismantle the existing process ofdeveloping house ofquality and TPM projects, which may already be under practice in the company concerned. Thus, the MQFD model enables the tactical marriage between QFD and TPM.First, the literature was reviewed. The results of this review indicated that no activities had so far been reported on integrating QFD in TPM and vice versa. During the second phase, a survey was conducted in six companies in which TPM had been implemented. The objective of this survey was to locate any traces of QFD implementation in TPM programme being implemented in these companies. This survey results indicated that no effort on integrating QFD in TPM had been made in these companies. After completing these two phases of activities, the MQFD model was designed. The details of this work are presented in this research work. Followed by this, the explorative studies on implementing this MQFD model in real time environments were conducted. In addition to that, an empirical study was carried out to examine the receptivity of MQFD model among the practitioners and multifarious organizational cultures. Finally, a sensitivity analysis was conducted to find the hierarchy of various factors influencing MQFD in a company. Throughout the research work, the theory and practice of MQFD were juxtaposed by presenting and publishing papers among scholarly communities and conducting case studies in real time scenario.
Resumo:
The preceding discussion and review of literature show that studies on gear selectivity have received great attention, while gear efficiency studies do not seem to have received equal consideration. In temperate waters, fishing industry is well organised and relatively large and well equipped vessels and gear are used for commercial fishing and the number of species are less; whereas in tropics particularly in India, small scale fishery dominates the scene and the fishery is multispecies operated upon by nmltigear. Therefore many of the problems faced in India may not exist in developed countries. Perhaps this would be the reason for the paucity of literature on the problems in estimation of relative efficiency. Much work has been carried out in estimating relative efficiency (Pycha, 1962; Pope, 1963; Gulland, 1967; Dickson, 1971 and Collins, 1979). The main subject of interest in the present thesis is an investigation into the problems in the comparison of fishing gears. especially in using classical test procedures with special reference to the prevailing fishing practices (that is. with reference to the catch data generated by the existing system). This has been taken up with a view to standardizing an approach for comparing the efficiency of fishing gear. Besides this, the implications of the terms ‘gear efficiency‘ and ‘gear selectivity‘ have been examined and based on the commonly used selectivity model (Holt, 1963), estimation of the ratio of fishing power of two gear has been considered. An attempt to determine the size of fish for which a gear is most efficient.has also been made. The work has been presented in eight chapters
Resumo:
Agent based simulation is a widely developing area in artificial intelligence.The simulation studies are extensively used in different areas of disaster management. This work deals with the study of an agent based evacuation simulation which is being done to handle the various evacuation behaviors.Various emergent behaviors of agents are addressed here. Dynamic grouping behaviors of agents are studied. Collision detection and obstacle avoidances are also incorporated in this approach.Evacuation is studied with single exits and multiple exits and efficiency is measured in terms of evacuation rate, collision rate etc.Net logo is the tool used which helps in the efficient modeling of scenarios in evacuation
Resumo:
Detection of Objects in Video is a highly demanding area of research. The Background Subtraction Algorithms can yield better results in Foreground Object Detection. This work presents a Hybrid CodeBook based Background Subtraction to extract the foreground ROI from the background. Codebooks are used to store compressed information by demanding lesser memory usage and high speedy processing. This Hybrid method which uses Block-Based and Pixel-Based Codebooks provide efficient detection results; the high speed processing capability of block based background subtraction as well as high Precision Rate of pixel based background subtraction are exploited to yield an efficient Background Subtraction System. The Block stage produces a coarse foreground area, which is then refined by the Pixel stage. The system’s performance is evaluated with different block sizes and with different block descriptors like 2D-DCT, FFT etc. The Experimental analysis based on statistical measurements yields precision, recall, similarity and F measure of the hybrid system as 88.74%, 91.09%, 81.66% and 89.90% respectively, and thus proves the efficiency of the novel system.
Resumo:
Post-transcriptional gene silencing by RNA interference is mediated by small interfering RNA called siRNA. This gene silencing mechanism can be exploited therapeutically to a wide variety of disease-associated targets, especially in AIDS, neurodegenerative diseases, cholesterol and cancer on mice with the hope of extending these approaches to treat humans. Over the recent past, a significant amount of work has been undertaken to understand the gene silencing mediated by exogenous siRNA. The design of efficient exogenous siRNA sequences is challenging because of many issues related to siRNA. While designing efficient siRNA, target mRNAs must be selected such that their corresponding siRNAs are likely to be efficient against that target and unlikely to accidentally silence other transcripts due to sequence similarity. So before doing gene silencing by siRNAs, it is essential to analyze their off-target effects in addition to their inhibition efficiency against a particular target. Hence designing exogenous siRNA with good knock-down efficiency and target specificity is an area of concern to be addressed. Some methods have been developed already by considering both inhibition efficiency and off-target possibility of siRNA against agene. Out of these methods, only a few have achieved good inhibition efficiency, specificity and sensitivity. The main focus of this thesis is to develop computational methods to optimize the efficiency of siRNA in terms of “inhibition capacity and off-target possibility” against target mRNAs with improved efficacy, which may be useful in the area of gene silencing and drug design for tumor development. This study aims to investigate the currently available siRNA prediction approaches and to devise a better computational approach to tackle the problem of siRNA efficacy by inhibition capacity and off-target possibility. The strength and limitations of the available approaches are investigated and taken into consideration for making improved solution. Thus the approaches proposed in this study extend some of the good scoring previous state of the art techniques by incorporating machine learning and statistical approaches and thermodynamic features like whole stacking energy to improve the prediction accuracy, inhibition efficiency, sensitivity and specificity. Here, we propose one Support Vector Machine (SVM) model, and two Artificial Neural Network (ANN) models for siRNA efficiency prediction. In SVM model, the classification property is used to classify whether the siRNA is efficient or inefficient in silencing a target gene. The first ANNmodel, named siRNA Designer, is used for optimizing the inhibition efficiency of siRNA against target genes. The second ANN model, named Optimized siRNA Designer, OpsiD, produces efficient siRNAs with high inhibition efficiency to degrade target genes with improved sensitivity-specificity, and identifies the off-target knockdown possibility of siRNA against non-target genes. The models are trained and tested against a large data set of siRNA sequences. The validations are conducted using Pearson Correlation Coefficient, Mathews Correlation Coefficient, Receiver Operating Characteristic analysis, Accuracy of prediction, Sensitivity and Specificity. It is found that the approach, OpsiD, is capable of predicting the inhibition capacity of siRNA against a target mRNA with improved results over the state of the art techniques. Also we are able to understand the influence of whole stacking energy on efficiency of siRNA. The model is further improved by including the ability to identify the “off-target possibility” of predicted siRNA on non-target genes. Thus the proposed model, OpsiD, can predict optimized siRNA by considering both “inhibition efficiency on target genes and off-target possibility on non-target genes”, with improved inhibition efficiency, specificity and sensitivity. Since we have taken efforts to optimize the siRNA efficacy in terms of “inhibition efficiency and offtarget possibility”, we hope that the risk of “off-target effect” while doing gene silencing in various bioinformatics fields can be overcome to a great extent. These findings may provide new insights into cancer diagnosis, prognosis and therapy by gene silencing. The approach may be found useful for designing exogenous siRNA for therapeutic applications and gene silencing techniques in different areas of bioinformatics.