9 resultados para mining data streams
em Cochin University of Science
Resumo:
Data mining is one of the hottest research areas nowadays as it has got wide variety of applications in common man’s life to make the world a better place to live. It is all about finding interesting hidden patterns in a huge history data base. As an example, from a sales data base, one can find an interesting pattern like “people who buy magazines tend to buy news papers also” using data mining. Now in the sales point of view the advantage is that one can place these things together in the shop to increase sales. In this research work, data mining is effectively applied to a domain called placement chance prediction, since taking wise career decision is so crucial for anybody for sure. In India technical manpower analysis is carried out by an organization named National Technical Manpower Information System (NTMIS), established in 1983-84 by India's Ministry of Education & Culture. The NTMIS comprises of a lead centre in the IAMR, New Delhi, and 21 nodal centres located at different parts of the country. The Kerala State Nodal Centre is located at Cochin University of Science and Technology. In Nodal Centre, they collect placement information by sending postal questionnaire to passed out students on a regular basis. From this raw data available in the nodal centre, a history data base was prepared. Each record in this data base includes entrance rank ranges, reservation, Sector, Sex, and a particular engineering. From each such combination of attributes from the history data base of student records, corresponding placement chances is computed and stored in the history data base. From this data, various popular data mining models are built and tested. These models can be used to predict the most suitable branch for a particular new student with one of the above combination of criteria. Also a detailed performance comparison of the various data mining models is done.This research work proposes to use a combination of data mining models namely a hybrid stacking ensemble for better predictions. A strategy to predict the overall absorption rate for various branches as well as the time it takes for all the students of a particular branch to get placed etc are also proposed. Finally, this research work puts forward a new data mining algorithm namely C 4.5 * stat for numeric data sets which has been proved to have competent accuracy over standard benchmarking data sets called UCI data sets. It also proposes an optimization strategy called parameter tuning to improve the standard C 4.5 algorithm. As a summary this research work passes through all four dimensions for a typical data mining research work, namely application to a domain, development of classifier models, optimization and ensemble methods.
Resumo:
For years, choosing the right career by monitoring the trends and scope for different career paths have been a requirement for all youngsters all over the world. In this paper we provide a scientific, data mining based method for job absorption rate prediction and predicting the waiting time needed for 100% placement, for different engineering courses in India. This will help the students in India in a great deal in deciding the right discipline for them for a bright future. Information about passed out students are obtained from the NTMIS ( National technical manpower information system ) NODAL center in Kochi, India residing in Cochin University of science and technology
Resumo:
In the current study, epidemiology study is done by means of literature survey in groups identified to be at higher potential for DDIs as well as in other cases to explore patterns of DDIs and the factors affecting them. The structure of the FDA Adverse Event Reporting System (FAERS) database is studied and analyzed in detail to identify issues and challenges in data mining the drug-drug interactions. The necessary pre-processing algorithms are developed based on the analysis and the Apriori algorithm is modified to suit the process. Finally, the modules are integrated into a tool to identify DDIs. The results are compared using standard drug interaction database for validation. 31% of the associations obtained were identified to be new and the match with existing interactions was 69%. This match clearly indicates the validity of the methodology and its applicability to similar databases. Formulation of the results using the generic names expanded the relevance of the results to a global scale. The global applicability helps the health care professionals worldwide to observe caution during various stages of drug administration thus considerably enhancing pharmacovigilance
Resumo:
Computational Biology is the research are that contributes to the analysis of biological data through the development of algorithms which will address significant research problems.The data from molecular biology includes DNA,RNA ,Protein and Gene expression data.Gene Expression Data provides the expression level of genes under different conditions.Gene expression is the process of transcribing the DNA sequence of a gene into mRNA sequences which in turn are later translated into proteins.The number of copies of mRNA produced is called the expression level of a gene.Gene expression data is organized in the form of a matrix. Rows in the matrix represent genes and columns in the matrix represent experimental conditions.Experimental conditions can be different tissue types or time points.Entries in the gene expression matrix are real values.Through the analysis of gene expression data it is possible to determine the behavioral patterns of genes such as similarity of their behavior,nature of their interaction,their respective contribution to the same pathways and so on. Similar expression patterns are exhibited by the genes participating in the same biological process.These patterns have immense relevance and application in bioinformatics and clinical research.Theses patterns are used in the medical domain for aid in more accurate diagnosis,prognosis,treatment planning.drug discovery and protein network analysis.To identify various patterns from gene expression data,data mining techniques are essential.Clustering is an important data mining technique for the analysis of gene expression data.To overcome the problems associated with clustering,biclustering is introduced.Biclustering refers to simultaneous clustering of both rows and columns of a data matrix. Clustering is a global whereas biclustering is a local model.Discovering local expression patterns is essential for identfying many genetic pathways that are not apparent otherwise.It is therefore necessary to move beyond the clustering paradigm towards developing approaches which are capable of discovering local patterns in gene expression data.A biclusters is a submatrix of the gene expression data matrix.The rows and columns in the submatrix need not be contiguous as in the gene expression data matrix.Biclusters are not disjoint.Computation of biclusters is costly because one will have to consider all the combinations of columans and rows in order to find out all the biclusters.The search space for the biclustering problem is 2 m+n where m and n are the number of genes and conditions respectively.Usually m+n is more than 3000.The biclustering problem is NP-hard.Biclustering is a powerful analytical tool for the biologist.The research reported in this thesis addresses the problem of biclustering.Ten algorithms are developed for the identification of coherent biclusters from gene expression data.All these algorithms are making use of a measure called mean squared residue to search for biclusters.The objective here is to identify the biclusters of maximum size with the mean squared residue lower than a given threshold. All these algorithms begin the search from tightly coregulated submatrices called the seeds.These seeds are generated by K-Means clustering algorithm.The algorithms developed can be classified as constraint based,greedy and metaheuristic.Constarint based algorithms uses one or more of the various constaints namely the MSR threshold and the MSR difference threshold.The greedy approach makes a locally optimal choice at each stage with the objective of finding the global optimum.In metaheuristic approaches particle Swarm Optimization(PSO) and variants of Greedy Randomized Adaptive Search Procedure(GRASP) are used for the identification of biclusters.These algorithms are implemented on the Yeast and Lymphoma datasets.Biologically relevant and statistically significant biclusters are identified by all these algorithms which are validated by Gene Ontology database.All these algorithms are compared with some other biclustering algorithms.Algorithms developed in this work overcome some of the problems associated with the already existing algorithms.With the help of some of the algorithms which are developed in this work biclusters with very high row variance,which is higher than the row variance of any other algorithm using mean squared residue, are identified from both Yeast and Lymphoma data sets.Such biclusters which make significant change in the expression level are highly relevant biologically.
Resumo:
This thesis Entitled Environmental impact of Sand Mining :A case Study in the river catchments of vembanad lake southwest india.The entire study is addressed in nine chapters. Chapter l deals with the general introduction about rivers, problems of river sand mining, objectives, location of the study area and scope of the study. A detailed review on river classification, classic concepts in riverine studies, geological work of rivers and channel processes, importance of river ecosystems and its need for management are dealt in Chapter 2. Chapter 3 gives a comprehensive account of the study area - its location, administrative divisions, physiography, soil, geology, land use and living and non-living resources. The various methods adopted in the study are dealt in Chapter 4. Chapter 5 contains river characteristics like drainage, environmental and geologic setting, channel characteristics, river discharge and water quality of the study area. Chapter 6 gives an account of river sand mining (instream and floodplain mining) from the study area. The various environmental problems of river sand mining on the land adjoining the river banks, river channel, water, biotic and social / human environments of the area and data interpretation are presented in Chapter 7. Chapter 8 deals with the Environmental Impact Assessment (EIA) and Environmental Management Plan (EMP) of sand mining from the river catchments of Vembanad lake.
Resumo:
Microarray data analysis is one of data mining tool which is used to extract meaningful information hidden in biological data. One of the major focuses on microarray data analysis is the reconstruction of gene regulatory network that may be used to provide a broader understanding on the functioning of complex cellular systems. Since cancer is a genetic disease arising from the abnormal gene function, the identification of cancerous genes and the regulatory pathways they control will provide a better platform for understanding the tumor formation and development. The major focus of this thesis is to understand the regulation of genes responsible for the development of cancer, particularly colorectal cancer by analyzing the microarray expression data. In this thesis, four computational algorithms namely fuzzy logic algorithm, modified genetic algorithm, dynamic neural fuzzy network and Takagi Sugeno Kang-type recurrent neural fuzzy network are used to extract cancer specific gene regulatory network from plasma RNA dataset of colorectal cancer patients. Plasma RNA is highly attractive for cancer analysis since it requires a collection of small amount of blood and it can be obtained at any time in repetitive fashion allowing the analysis of disease progression and treatment response.
Resumo:
Biclustering is simultaneous clustering of both rows and columns of a data matrix. A measure called Mean Squared Residue (MSR) is used to simultaneously evaluate the coherence of rows and columns within a submatrix. In this paper a novel algorithm is developed for biclustering gene expression data using the newly introduced concept of MSR difference threshold. In the first step high quality bicluster seeds are generated using K-Means clustering algorithm. Then more genes and conditions (node) are added to the bicluster. Before adding a node the MSR X of the bicluster is calculated. After adding the node again the MSR Y is calculated. The added node is deleted if Y minus X is greater than MSR difference threshold or if Y is greater than MSR threshold which depends on the dataset. The MSR difference threshold is different for gene list and condition list and it depends on the dataset also. Proper values should be identified through experimentation in order to obtain biclusters of high quality. The results obtained on bench mark dataset clearly indicate that this algorithm is better than many of the existing biclustering algorithms
Resumo:
Knowledge discovery in databases is the non-trivial process of identifying valid, novel potentially useful and ultimately understandable patterns from data. The term Data mining refers to the process which does the exploratory analysis on the data and builds some model on the data. To infer patterns from data, data mining involves different approaches like association rule mining, classification techniques or clustering techniques. Among the many data mining techniques, clustering plays a major role, since it helps to group the related data for assessing properties and drawing conclusions. Most of the clustering algorithms act on a dataset with uniform format, since the similarity or dissimilarity between the data points is a significant factor in finding out the clusters. If a dataset consists of mixed attributes, i.e. a combination of numerical and categorical variables, a preferred approach is to convert different formats into a uniform format. The research study explores the various techniques to convert the mixed data sets to a numerical equivalent, so as to make it equipped for applying the statistical and similar algorithms. The results of clustering mixed category data after conversion to numeric data type have been demonstrated using a crime data set. The thesis also proposes an extension to the well known algorithm for handling mixed data types, to deal with data sets having only categorical data. The proposed conversion has been validated on a data set corresponding to breast cancer. Moreover, another issue with the clustering process is the visualization of output. Different geometric techniques like scatter plot, or projection plots are available, but none of the techniques display the result projecting the whole database but rather demonstrate attribute-pair wise analysis