7 resultados para min-max shadow maps
em Cochin University of Science
Resumo:
Blends of Acrylonitrile rubber with Maleic anhydride grafted Whole Tyre Reclaim WTR (MA-g-WTR) have been prepared and the cure and mechanical properties have been studied with respect to reclaim content. Control compounds containing unmodified WTR were also prepared for comparison. Grafting was confirmed by IR studies. Blends containing grafted WTR showed higher minimum torque and (max-min) torque. They also showed longer cure time, scorch time and lower cure rate. Grafting of the WTR with maleic anhydride also resulted in the improved tensile strength, abrasion resistance, compression set and resilience. However, the heat build up under dynamic loading was marginally higher for the blends containing grafted reclaimed rubber.
Resumo:
This thesis is a study of discrete nonlinear systems represented by one dimensional mappings.As one dimensional interative maps represent Poincarre sections of higher dimensional flows,they offer a convenient means to understand the dynamical evolution of many physical systems.It highlighting the basic ideas of deterministic chaos.Qualitative and quantitative measures for the detection and characterization of chaos in nonlinear systems are discussed.Some simple mathematical models exhibiting chaos are presented.The bifurcation scenario and the possible routes to chaos are explained.It present the results of the numerical computational of the Lyapunov exponents (λ) of one dimensional maps.This thesis focuses on the results obtained by our investigations on combinations maps,scaling behaviour of the Lyapunov characteristic exponents of one dimensional maps and the nature of bifurcations in a discontinous logistic map.It gives a review of the major routes to chaos in dissipative systems,namely, Period-doubling ,Intermittency and Crises.This study gives a theoretical understanding of the route to chaos in discontinous systems.A detailed analysis of the dynamics of a discontinous logistic map is carried out, both analytically and numerically ,to understand the route it follows to chaos.The present analysis deals only with the case of the discontinuity parameter applied to the right half of the interval of mapping.A detailed analysis for the n –furcations of various periodicities can be made and a more general theory for the map with discontinuities applied at different positions can be on a similar footing
Resumo:
We establish numerically the validity of Huberman-Rudnick scaling relation for Lyapunov exponents during the period doubling route to chaos in one dimensional maps. We extend our studies to the context of a combination map. where the scaling index is found to be different.
Resumo:
The study of simple chaotic maps for non-equilibrium processes in statistical physics has been one of the central themes in the theory of chaotic dynamical systems. Recently, many works have been carried out on deterministic diffusion in spatially extended one-dimensional maps This can be related to real physical systems such as Josephson junctions in the presence of microwave radiation and parametrically driven oscillators. Transport due to chaos is an important problem in Hamiltonian dynamics also. A recent approach is to evaluate the exact diffusion coefficient in terms of the periodic orbits of the system in the form of cycle expansions. But the fact is that the chaotic motion in such spatially extended maps has two complementary aspects- - diffusion and interrnittency. These are related to the time evolution of the probability density function which is approximately Gaussian by central limit theorem. It is noticed that the characteristic function method introduced by Fujisaka and his co-workers is a very powerful tool for analysing both these aspects of chaotic motion. The theory based on characteristic function actually provides a thermodynamic formalism for chaotic systems It can be applied to other types of chaos-induced diffusion also, such as the one arising in statistics of trajectory separation. It was noted that there is a close connection between cycle expansion technique and characteristic function method. It was found that this connection can be exploited to enhance the applicability of the cycle expansion technique. In this way, we found that cycle expansion can be used to analyse the probability density function in chaotic maps. In our research studies we have successfully applied the characteristic function method and cycle expansion technique for analysing some chaotic maps. We introduced in this connection, two classes of chaotic maps with variable shape by generalizing two types of maps well known in literature.
Resumo:
One can do research in pointfree topology in two ways. The rst is the contravariant way where research is done in the category Frm but the ultimate objective is to obtain results in Loc. The other way is the covariant way to carry out research in the category Loc itself directly. According to Johnstone [23], \frame theory is lattice theory applied to topology whereas locale theory is topology itself". The most part of this thesis is written according to the rst view. In this thesis, we make an attempt to study about 1. the frame counterparts of maximal compactness, minimal Hausdor - ness and reversibility, 2. the automorphism groups of a nite frame and its relation with the subgroups of the permutation group on the generator set of the frame
Resumo:
This thesis comprises five chapters including the introductory chapter. This includes a brief introduction and basic definitions of fuzzy set theory and its applications, semigroup action on sets, finite semigroup theory, its application in automata theory along with references which are used in this thesis. In the second chapter we defined an S-fuzzy subset of X with the extension of the notion of semigroup action of S on X to semigroup action of S on to a fuzzy subset of X using Zadeh's maximal extension principal and proved some results based on this. We also defined an S-fuzzy morphism between two S-fuzzy subsets of X and they together form a category S FSETX. Some general properties and special objects in this category are studied and finally proved that S SET and S FSET are categorically equivalent. Further we tried to generalize this concept to the action of a fuzzy semigroup on fuzzy subsets. As an application, using the above idea, we convert a _nite state automaton to a finite fuzzy state automaton. A classical automata determine whether a word is accepted by the automaton where as a _nite fuzzy state automaton determine the degree of acceptance of the word by the automaton. 1.5. Summary of the Thesis 17 In the third chapter we de_ne regular and inverse fuzzy automata, its construction, and prove that the corresponding transition monoids are regular and inverse monoids respectively. The languages accepted by an inverse fuzzy automata is an inverse fuzzy language and we give a characterization of an inverse fuzzy language. We study some of its algebraic properties and prove that the collection IFL on an alphabet does not form a variety since it is not closed under inverse homomorphic images. We also prove some results based on the fact that a semigroup is inverse if and only if idempotents commute and every L-class or R-class contains a unique idempotent. Fourth chapter includes a study of the structure of the automorphism group of a deterministic faithful inverse fuzzy automaton and prove that it is equal to a subgroup of the inverse monoid of all one-one partial fuzzy transformations on the state set. In the fifth chapter we define min-weighted and max-weighted power automata study some of its algebraic properties and prove that a fuzzy automaton and the fuzzy power automata associated with it have the same transition monoids. The thesis ends with a conclusion of the work done and the scope of further study.