4 resultados para microwave-assisted decomposition

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO micro particles in the range 0.4-0.6 μm were synthesized by microwave irradiation method. The XRD analysis reveals that the sample is in the wurtzite phase with orientation along the (101) plane. SAED pattern of the sample reveals the single crystalline nature of the micro grains. TEM images show the formation of cylindrical shaped ZnO micro structures with hexagonal faces. The optical phonon modes were slightly shifted in the Raman spectrum,attributed to the presence of various crystalline defects and laser induced local heating at the grain boundaries. A broad transmission profile was observed in the FTIR spectrum from 1550-3400 cm-1 which falls in the atmospheric transparency window region. PL spectrum centered at 500 nm with a broad band in the region 420-570 nm comprised of different emission peaks attributed to transition between defect levels. Various emission levels in the sample were expliained with a band diagram

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The semiconductor industry's urge towards faster, smaller and cheaper integrated circuits has lead the industry to smaller node devices. The integrated circuits that are now under volume production belong to 22 nm and 14 nm technology nodes. In 2007 the 45 nm technology came with the revolutionary high- /metal gate structure. 22 nm technology utilizes fully depleted tri-gate transistor structure. The 14 nm technology is a continuation of the 22 nm technology. Intel is using second generation tri-gate technology in 14 nm devices. After 14 nm, the semiconductor industry is expected to continue the scaling with 10 nm devices followed by 7 nm. Recently, IBM has announced successful production of 7 nm node test chips. This is the fashion how nanoelectronics industry is proceeding with its scaling trend. For the present node of technologies selective deposition and selective removal of the materials are required. Atomic layer deposition and the atomic layer etching are the respective techniques used for selective deposition and selective removal. Atomic layer deposition still remains as a futuristic manufacturing approach that deposits materials and lms in exact places. In addition to the nano/microelectronics industry, ALD is also widening its application areas and acceptance. The usage of ALD equipments in industry exhibits a diversi cation trend. With this trend, large area, batch processing, particle ALD and plasma enhanced like ALD equipments are becoming prominent in industrial applications. In this work, the development of an atomic layer deposition tool with microwave plasma capability is described, which is a ordable even for lightly funded research labs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A phantom that exhibits complex dielectric properties similar to low-water-content biological tissues over the electromagnetic spectrum of 2000–3000 MHz has been synthesized from carbon black, graphite powder, and poly vinyl acetate (PVA)-based adhesive. The material overcomes various problems that are inherent in conventional phantoms such as decomposition and deterioration due to the invasion of bacteria or mold. The absorption coefficients of the material for various concentrations of carbon and graphite are studied. A combination of 50% poly-vinyl-acetate-based adhesive, 20% carbon, and 30% graphite exhibits a high absorption coefficient, which suggests another application of the material as a good microwave absorber for the interior lining of tomographic chamber in microwave imaging. The cavity-perturbation technique is adopted to study the dielectric properties of the material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phantoms that exhibit complex dielectric properties similar to low water content biological tissues over the electromagnetic spectrum of 2–3 GHz have been synthesized from carbon black powder, graphite powder and polyvinyl-acetate-based adhesive. The materials overcome various problems that are inherent in conventional phantoms such as decomposition and deterioration due to the invasion of bacteria or mold. The absorption coefficients of the materials for various compositions of carbon black and graphite powder are studied. A combination of 50% polyvinylacetate- based adhesive, 20% carbon black powder and 30% graphite powder exhibits high absorption coefficient, which suggests another application of the material as good microwave absorber for interior lining of tomographic chamber in microwave imaging. Cavity perturbation technique is adopted to study the dielectric properties of the material.