11 resultados para metallic scales

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the effect of parameter fluctuations and the resultant multiplicative noise on the synchronization of coupled chaotic systems. We introduce a new quantity, the fluctuation rate Ф as the number of perturbations occurring to the parameter in unit time. It is shown that ϕ is the most significant quantity that determines the quality of synchronization. It is found that parameter fluctuations with high fluctuation rates do not destroy synchronization, irrespective of the statistical features of the fluctuations. We also present a quasi-analytic explanation to the relation between ϕ and the error in synchrony.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose to show in this paper, that the time series obtained from biological systems such as human brain are invariably nonstationary because of different time scales involved in the dynamical process. This makes the invariant parameters time dependent. We made a global analysis of the EEG data obtained from the eight locations on the skull space and studied simultaneously the dynamical characteristics from various parts of the brain. We have proved that the dynamical parameters are sensitive to the time scales and hence in the study of brain one must identify all relevant time scales involved in the process to get an insight in the working of brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The motivatitni for" the present work is from .a project sanctioned by TSRO. The work involved the development of a quick and reliable test procedure using microwaves, for tflue inspection of cured propellant samples and a method to monitor the curing conditions of propellant mix undergoing the curing process.Normal testing CHE the propellant samples involvecuttimg a piece from each carton and testing it for their tensile strength. The values are then compared with standard ones and based on this result the sample isaccepted or rejected. The tensile strength is a measure ofdegree of cure of the propellant mix. But this measurementis a destructive procedure as it involves cutting of the sample. Moreover, it does not guarantee against nonuniform curing due to power failure, hot air-line failure,operator error etc. This necessitated the need for the development of a quick and reliable non-destructive test procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis aims to present the results of experimental investigations on the changes of optical properties of metallic thin films due to heating. The parameters which are measured are reflectivity, refractive indices and the ellipsometric quantities V and A . The materials used in the studies are metals like Silver, Aluminium and Copper. By applying the optical method the interdiffusion taking place in multilayer ‘films of Aluminium and Silver has also been studied. Special interest has been taken to reveal the mechanisms of the hillock growth and surface roughness caused by heating and their relation with the stress in the film

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regional climate models are becoming increasingly popular to provide high resolution climate change information for impacts assessments to inform adaptation options. Many countries and provinces requiring these assessments are as small as 200,000 km2 in size, significantly smaller than an ideal domain needed for successful applications of one-way nested regional climate models. Therefore assessments on sub-regional scales (e.g., river basins) are generally carried out using climate change simulations performed for relatively larger regions. Here we show that the seasonal mean hydrological cycle and the day-to-day precipitation variations of a sub-region within the model domain are sensitive to the domain size, even though the large scale circulation features over the region are largely insensitive. On seasonal timescales, the relatively smaller domains intensify the hydrological cycle by increasing the net transport of moisture into the study region and thereby enhancing the precipitation and local recycling of moisture. On daily timescales, the simulations run over smaller domains produce higher number of moderate precipitation days in the sub-region relative to the corresponding larger domain simulations. An assessment of daily variations of water vapor and the vertical velocity within the sub-region indicates that the smaller domains may favor more frequent moderate uplifting and subsequent precipitation in the region. The results remained largely insensitive to the horizontal resolution of the model, indicating the robustness of the domain size influence on the regional model solutions. These domain size dependent precipitation characteristics have the potential to add one more level of uncertainty to the downscaled projections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxide free stable metallic nanofluids have the potential for various applications such as in thermal management and inkjet printing apart from being a candidate system for fundamental studies. A stable suspension of nickel nanoparticles of ∼5 nm size has been realized by a modified two-step synthesis route. Structural characterization by x-ray diffraction and transmission electron microscopy shows that the nanoparticles are metallic and are phase pure. The nanoparticles exhibited superparamagnetic properties. The magneto-optical transmission properties of the nickel nanofluid (Ni-F) were investigated by linear optical dichroism measurements. The magnetic field dependent light transmission studies exhibited a polarization dependent optical absorption, known as optical dichroism, indicating that the nanoparticles suspended in the fluid are non-interacting and superparamagnetic in nature. The nonlinear optical limiting properties of Ni-F under high input optical fluence were then analyzed by an open aperture z-scan technique. The Ni-F exhibits a saturable absorption at moderate laser intensities while effective two-photon absorption is evident at higher intensities. The Ni-F appears to be a unique material for various optical devices such as field modulated gratings and optical switches which can be controlled by an external magnetic field

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Swift heavy ion induced changes in microstructure and surface morphology of vapor deposited Fe–Ni based metallic glass thin films have been investigated by using atomic force microscopy, X-ray diffraction and transmission electron microscopy. Ion beam irradiation was carried out at room temperature with 103 MeV Au9+ beam with fluences ranging from 3 1011 to 3 1013 ions/cm2. The atomic force microscopy images were subjected to power spectral density analysis and roughness analysis using an image analysis software. Clusters were found in the image of as-deposited samples, which indicates that the film growth is dominated by the island growth mode. As-deposited films were amorphous as evidenced from X-ray diffraction; however, high resolution transmission electron microscopy measurements revealed a short range atomic order in the samples with crystallites of size around 3 nm embedded in an amorphous matrix. X-ray diffraction pattern of the as-deposited films after irradiation does not show any appreciable changes, indicating that the passage of swift heavy ions stabilizes the short range atomic ordering, or even creates further amorphization. The crystallinity of the as-deposited Fe–Ni based films was improved by thermal annealing, and diffraction results indicated that ion beam irradiation on annealed samples results in grain fragmentation. On bombarding annealed films, the surface roughness of the films decreased initially, then, at higher fluences it increased. The observed change in surface morphology of the irradiated films is attributed to the interplay between ion induced sputtering, volume diffusion and surface diffusion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic properties of amorphous Fe–Ni–B based metallic glass nanostructures were investigated. The nanostructures underwent a spin-glass transition at temperatures below 100 K and revealed an irreversible temperature following the linear de Almeida–Thouless dependence. When the nanostructures were cooled below 25 K in a magnetic field, they exhibited an exchange bias effect with enhanced coercivity. The observed onset of exchange bias is associated with the coexistence of the spin-glass phase along with the appearance of another spin-glass phase formed by oxidation of the structurally disordered surface layer, displaying a distinct training effect and cooling field dependence. The latter showed a maximum in exchange bias field and coercivity, which is probably due to competing multiple equivalent spin configurations at the boundary between the two spin-glass phases

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultra thin films based on CoFe were prepared from a composite target employing thermal evaporation. The microstructure of the films was modified by thermal annealing. The relationship between microstructure and magnetic properties of the films was investigated using techniques like glancing angle X-ray diffraction (GXRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The GXRD and TEM investigations showed an onset of crystallization of CoFe at around 373 K. The magnetic softness of the films improved with thermal annealing but at higher annealing temperature it is found to be deteriorating. Annealing inducedmodification of surface morphology of the alloy thin filmswas probed by atomic force microscopy (AFM). Surface smoothening was observed with thermal annealing and the observed magnetic properties correlate well with surface modifications induced by thermal annealing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition metal acetylides, MC2 (M=Fe, Co and Ni), exhibit ferromagnetic behavior of which TC is characteristic of their size and structure. CoC2 synthesized in anhydrous condition exhibited cubic structure with disordered C2− 2 orientation. Once being exposed to water (or air), the particles behave ferromagnetically due to the lengthening of the Co–Co distance by the coordination of water molecules to Co2+ cations. Heating of these particles induces segregation of metallic cores with carbon mantles. Electron beam or 193 nm laser beam can produce nanoparticles with metallic cores covered with carbon mantles