7 resultados para mesoporous materials
em Cochin University of Science
Resumo:
To meet the challenges related to the chemical industry,development of efficient catalysts is necessary.The mesoporous materials like SBA-15 are considered as good catalyst candidates of 21st century.SBA-15 mesoporous materials are catalytically inactive,but allow the dispersion of catalytically active phases into the framework.So these materials can be considered as an interesting alternative for preparing catalytically active metal nanoparticles in-situ into it.In the present work various transition metals are incorporated to improve the catalytic activity of SBA-15 material.The fundamental aspects of the preparation,characterization and the activity studies are briefly viewed in this thesis. Systematic investigation of the physico-chemical properties and catalytic activity studies of the prepared materials were carried out and presented in this Study.
Resumo:
Mesoporous materials are of great interest to the materials community because of their potential applications for catalysis,separation of large molecules,medical implants,semiconductors,magnetoelectric devices.The thesis entitled 'Ordered Mesoporous Silica as supports for immobilization of Biocatalyst' presents how the pore size can be tuned without the loss in ordered structure for the entrapment of an industially important biocatalyst-amylase.Immobilization of enzymes on ordered mesoporous material has triggered new ooportunities for stabilizing enzymes with improved intrinsic and operational stabilities.
Resumo:
The influence of the chemical composition and silylation of mesoporous MCM-41 materials on the photochromic behaviour of adsorbed spiropyran (BIPS) and 6-nitrospiropyran was studied. Upon incorporation, the spiropyrans underwent ring opening to form either zwitterionic merocyanine or its corresponding O-protonated form. In all silica MCM-41 or in the MCM-41 containing aluminium, the O-protonated merocyanine was predominantly formed. In the case of MCM-41 modified by silylation of the OH groups, a mixture of zwitterionic merocyanine and spiropyran was present. The photochromic response was studied by means of steady-state irradiation and by laser flash photolysis. Steady-state irradiation (λ > 450 nm) of the solid samples gives rise in all cases to an intensity decrease of the absorption bands corresponding to either the protonated or the unprotonated merocyanine form (reverse photochromism). In contrast, laser flash photolysis at 308 nm of spiropyrans supported on silylated MCM-41 allows observation of the photochemical ring opening of residual spiropyran to the corresponding zwitterionic form (normal photochromism).
Resumo:
The thesis covers a systematic investigation on the synthesis of silica aerogels and microspheres with tailored porosity, at ambient conditions by varying the experimental parameters as well as using organic templates. Organically modified silica-gelatin and silica-chitosan hybrids were developed for the first time using alkylalkoxysilanes such as MTMS and VTMS. Application of novel silica-biopolymer antiwetting coatings on different substrates such as glass, leather and textile is also demonstrated in the thesis.
Resumo:
The present work describes the immobilization of α-amylase over well ordered mesoporous molecular sieve SBA-15 with different pore diameters synthesized by post synthesis treatment (PST) hydrothermally after reaction at 40°C. The materials were characterized by N 2 adsorption–desorption studies, small angle X-ray diffraction, scanning electron microscopy and high resolution transmission electron microscopy. Since α-amylase obtained from Bacillus subtilis has dimensions of 35 × 40 × 70 Å it is expected that the protein have access to the pore of SBA-15 (PST-120°C) with diameter 74 Å. The pore dimension is appropriate to prevent considerable leaching. The rate of adsorption of the enzyme on silica of various pore sizes revealed the influence of morphology, pore diameter, pore volume and pH.
Resumo:
Mesoporous silica nanoparticles provide a non-invasive and biocompatible delivery platform for a broad range of applications in therapeutics, pharmaceuticals and diagnosis. Additionally, mesoporous silica materials can be synthesized together with other nanomaterials to create new nanocomposites, opening up a wide variety of potential applications. The ready functionalization of silica materials makes them ideal candidates for bioapplications and catalysis. These properties of mesoporous silica like high surface areas, large pore volumes and ordered pore networks allow them for higher loading of drugs or biomolecules. Comparative studies have been made to evaluate the different procedures; much of the research to date has involved quick exploration of new methods and supports. Requirements for different enzymes may vary, and specific conditions may be needed for a particular application of an immobilized enzyme such as a highly rigid support. In this endeavor, mesoporous silica materials having different pore size were synthesized and easily modified with active functional groups and were evaluated for the immobilization of enzymes. In this work, Aspergillus niger glucoamylase, Bovine liver catalase, Candida rugosa lipase were immobilized onto support by adsorption and covalent binding. The structural properties of pure and immobilized supports are analyzed by various characterization techniques and are used for different reactions of industrial applications.